5.95 (1 H, ddd, J 10.2, 2.6 and 1.6 Hz), 5.13 (1 H, dt, J 9.8 Hz,
3.4 Hz), 2.54 (1 H, m), 2.34–2.51 (3 H, m), 2.15–2.32 (3 H, m),
2.09 (1 H, m), 2.01 (3 H, s), 1.86 (1 H, dq, J 14.8, 3.1 Hz), 1.78
(1 H, m), 1.62 (1 H, m), 1.50 (1 H, m); dC (CDCl3) 211.79, 198.82,
170.06, 148.72, 128.58, 71.27, 61.77, 46.83, 31.30, 30.41, 26.93,
22.59, 21.13, 21.06, 18.47; HRCIMS (CH4) Calcd. for C15H19O4
263.1283. Found 263.1281.
126.83, 73.68, 73.06, 62.02, 54.46, 46.83, 30.66, 30.42, 26.96,
22.75, 20.97, 18.47; HRCIMS (CH4) Calcd. for C29H30O6N
488.2073. Found 488.2078.
Isolation of microtubule proteins and assembly studies
Cow brain microtubule proteins were isolated by two cycles of
assembly–disassembly as described in Wallin et al.56 Assembly
was measured at +30 °C. Microtubule proteins were drop-frozen
and kept in liquid nitrogen until used in experiments. Protein
concentrations were determined according to Lowry et al.,57
with bovine serum albumin as a standard.
(1R,3S,4S,6S)-Spiro[6-hydroxybicyclo[2.2.2]octan-2-one-3,1-
cyclohex-3-en]-2-one (15)
Solid K2CO3 (10 mg, 0.07 mmol) was added all at once to
a solution of 14 (100 mg, 0.38 mmol) in MeOH:H2O 9:1
(20 mL). The mixture was kept at room temperature for 2
h and then the solution was concentrated to approximately
4 mL at reduced pressure. The resulting solution was extracted
several times with EtOAc and the combined organic phase was
dried and concentrated at reduced pressure. The residue was
chromatographed (SiO2, heptane:EtOAc 1:4) to give 15 (72 mg,
86%) as a white solid; mp 135–136 °C; [a]D −43 (c 0.5 in CHCl3);
mmax(KBr)/cm−1 3020–3500, 2950, 2910, 1720, 1650, 1215; dH
(CDCl3) 6.88 (1 H, m), 5.93 (1 H, dt, J 10.2, 1.8 Hz), 4.23 (1 H,
dt, J 9.6 Hz, 3.0 Hz), 2.45 (1 H, m), 2.27–2.41 (4 H, m), 2.14
(1 H, ddd, J 14.8, 9.5 and 3.0 Hz), 2.05 (1 H, m), 1.88 (1 H, dq, J
14.7 Hz, 3.1 Hz), 1.79 (1 H, s), 1.56–1.73 (3 H, m), 1.45 (1 H, m);
dC (CDCl3) 213.51, 199.38, 148.87, 128.55, 69.60, 61.97, 51.13,
33.13, 30.58, 26.92, 22.69, 21.09, 18.43; HRCIMS (CH4) Calcd.
for C13H17O3 221.1178. Found 221.1174.
Assembly–disassembly of microtubules were measured in
a temperature-controlled spectrophotometer at 350 nm. The
assembly was induced by addition of 1 mM GTP and increasing
the temperature from 4 °C to 30 °C.
Acknowledgements
We thank the Swedish Science Council, The Crafoord Founda-
tion, The Royal Physiographic Society in Lund, The Research
School in Medicinal Sciences at Lund University and the Knut
and Alice Wallenberg Foundation for economic support. We
are grateful to professor Don Mastropaolo for sending us the
coordinates of the crystallographic structures of paclitaxel.
References
1 M. Suffness, TAXOL® Science and Applications, CRC Press, Inc.,
New York, 1995.
2 G. I. Georg, T. T. Chen, I. Ojima and D. M. Vyas, ACS Symp. Ser.,
1995, 583.
3 R. A. Holton, C. Somoza, H. B. Kim, F. Liang, R. J. Biediger, P. D.
Boatman, M. Shindo, C. C. Smith, S. Kim, H. Nadizadeh, Y. Suzuki,
C. Tao, P. Vu, S. Tang, P. Zhang, K. K. Murthi, L. N. Gentile and
J. H. Liu, J. Am. Chem. Soc., 1994, 116, 1597–1598.
4 R. A. Holton, H. B. Kim, C. Somoza, F. Liang, R. J. Biediger, P. D.
Boatman, M. Shindo, C. C. Smith, S. Kim, H. Nadizadeh, Y. Suzuki,
C. Tao, P. Vu, S. Tang, P. Zhang, K. K. Murthi, L. N. Gentile and
J. H. Liu, J. Am. Chem. Soc., 1994, 116, 1599–1600.
5 K. C. Nicolaou, Z. Yang, J. J. Liu, H. Ueno, P. G. Nantermet, R. K.
Guy, C. F. Claiborne, J. Renaud, E. A. Couladouros, K. Paulvannan
and E. J. Sorensen, Nature, 1994, 367, 630–634.
6 S. J. Danishefsky, J. J. Masters, W. B. Young, J. T. Link, L. B.
Snyder, T. V. Magee, D. K. Jung, R. C. A. Isaacs, W. G. Bornmann,
C. A. Alaimo, C. A. Coburn and M. J. Di Grandi, J. Am. Chem.
Soc., 1996, 118, 2843–2859.
7 P. A. Wender, N. F. Badham, S. P. Conway, P. E. Floreancig,
T. E. Glass, C. Graenicher, J. B. Houze, J. Jaenichen, D. Lee,
D. G. Marquess, P. L. McGrane, W. Meng, T. P. Mucciaro,
M. Muehlebach, M. G. Natchus, H. Paulsen, D. B. Rawlins,
J. Satkofsky, A. J. Shuker, J. C. Sutton, R. E. Taylor and K. Tomooka,
J. Am. Chem. Soc., 1997, 119, 2755–2756.
8 P. A. Wender, N. F. Badham, S. P. Conway, P. E. Floreancig, T. E.
Glass, J. B. Houze, N. E. Krauss, D. Lee, D. G. Marquess, P. L.
McGrane, W. Meng, M. G. Natchus, A. J. Shuker, J. C. Sutton and
R. E. Taylor, J. Am. Chem. Soc., 1997, 119, 2757–2758.
9 H. Kusama, R. Hara, S. Kawahara, T. Nishimori, H. Kashima,
N. Nakamura, K. Morihira and I. Kuwajima, J. Am. Chem. Soc.,
2000, 122, 3811–3820.
10 T. Mukaiyama, I. Shiina, H. Iwadare, M. Saitoh, T. Nishimura,
N. Ohkawa, H. Sakoh, K. Nishimura, Y.-I. Tani, M. Hasegawa,
K. Yamada and K. Saitoh, Chem. Eur. J., 1999, 5, 121–161.
11 G. Samaranayake, N. F. Magri, C. Jitrangski and D. G. I. Kingston,
J. Org. Chem., 1991, 56, 5114–5119.
(2R,3S)-N-Benzoyl-3-phenylisoserine ester with (1R,3S,4S,6S)-
spiro[6-hydroxybicyclo[2.2.2]octan-2-one-3,1-cyclohex-3-en]-
2-one (8c)
DMAP (ca. 3 mg) and DCC (51 mg, 0.25 mmol) were added
to a solution of 15 (46 mg, 0.21 mmol) and 1752,53 (83 mg,
0.25 mmol) in CH2Cl2 (1.5 mL) at 0 °C. The cooling bath was
removed and the mixture was stirred at room temperature for
3 h. After filtration, the filtrate was concentrated at reduced
pressure and then the residue was chromatographed (SiO2,
heptane:EtOAc 1:2) to give 16 (61 mg, 55%) as a white solid;
mp 198–200 °C; [a]D −43 (c 2.1 in CHCl3); mmax(KBr)/cm−1 3380,
3000, 2950, 1740, 1720, 1660, 1645, 1520, 1035; dH (CDCl3) 7.83
(2 H, m), 7.44–7.56 (3 H, m), 7.35 (4 H, m), 7.26 (1 H, m), 7.06
(1 H, d, J 9.2 Hz), 6.89 (1 H, m), 5.92 (1 H, dt, J 10.1 Hz, 1.2 Hz),
5.71 (1 H, dd, J 9.2, 2.2 Hz), 5.23 (1 H, dt, J 9.8, 3.3 Hz), 4.63
(1 H, d, J 6.9 Hz), 4.57 (1 H, d, J 2.3 Hz), 4.46 (1 H, d, J 6.9 Hz),
2.87 (3 H, s), 2.53 (1 H, m), 2.07–2.51 (7 H, m), 1.85 (1 H, dq, J
15.2 Hz, 2.0 Hz), 1.75 (1 H, m), 1.60 (1 H, m), 1.46 (1 H, m); dC
(CDCl3) 211.61, 199.00, 169.06, 166.85, 149.44, 138.19, 134.03,
131.79, 128.68, 128.51, 128.27, 127.66, 127.06, 126.42, 95.67,
76.51, 72.77, 61.94, 55.76, 54.49, 46.79, 31.07, 30.42, 26.95,
22.73, 20.94, 18.52; HRCIMS (CH4) Calcd. for C31H34O7N
532.2335. Found 532.2333.
Me2BBr (158 lL, 1.85 M in CH2Cl2, 292 lmol) was added to
a solution of 16 (39 mg, 73 lmol) in CH2Cl2 (3 mL) at −70 °C.
The solution was stirred for 2 h at −50 °C and then the reaction
mixture was quenched by addition of aqueous NaHCO3 (sat.,
3 mL). The aqueous phase was extracted with CH2Cl2 and then
the combined organic phase was washed with brine, dried and
the solvent was removed under reduced pressure. The residue
was chromatographed (HPLC, Nucleosil Silica, 500 × 10 mm,
heptane:EtOAc 1:3) to give 8c (24 mg, 70%) as a white
foam; [a]D −55 (c 1.2 in CHCl3); mmax(ZnSe)/cm−1 3374, 3031,
2951, 2876, 1728, 1660, 1520, 1114; dH (CDCl3) 7.77 (2 H, m),
7.27–7.54 (8 H, m), 6.97 (1 H, bd, J 8.8 Hz), 6.91 (1 H, ddt, J
10.1 Hz, 3.0 Hz, 1.7 Hz), 5.94 (1 H, dq, J 10.2 Hz, 1.1 Hz), 5.67
(1 H, dd, J 9.4 and 1.9 Hz), 5.27 (1 H, dt, J 9.9 and 3.2 Hz), 4.62
(1 H, d, J 2.0 Hz), 3.42 (1 H, s), 2.54 (1 H, m), 2.06–2.50 (7 H, m),
1.98 (1 H, dq, J 15.3 Hz, 2.9 Hz), 1.76 (1 H, m), 1.62 (1 H, m),
1.47 (1 H, m); dC (CDCl3) 211.85, 199.00, 172.04, 166.86, 149.50,
138.35, 133.94, 131.84, 128.75, 128.68, 128.29, 127.92, 127.02,
12 S. Blechert and A. Kleine-Klausing, Angew. Chem., Int. Ed. Engl.,
1991, 30, 412–414.
13 K. C. Nicolaou, C. F. Claiborne, P. G. Nantermet, E. A. Couladouros
and E. J. Sorensen, J. Am. Chem. Soc., 1994, 116, 1591–1592.
14 L. Barboni, G. Giarlo, M. Ricciutelli, R. Ballini, G. I. Georg,
D. G. VanderVelde, R. H. Himes, M. Wang, A. Lakdawala and
J. P. Snyder, Org. Lett., 2004, 6, 461–464.
15 U. Klar, H. Graf, O. Schenck, B. Röhr and H. Schulz, Bioorg. Med.
Chem. Lett., 1998, 8, 1397–1402.
16 J. Howarth, P. Kenny, S. McDonnell and A. O’Connor, Bioorg.
Med. Chem. Lett., 2003, 13, 2693–2697.
17 S. J. Haggarty, T. U. Mayer, D. T. Maiyamoto, R. Fathi, R. W.
King, T. J. Mitchison and S. L. Schreiber, Chem. Biol., 2000, 7,
275–286.
O r g . B i o m o l . C h e m . , 2 0 0 4 , 2 , 3 0 8 5 – 3 0 9 0
3 0 8 9