20-30 min. The organic layer was separated and extracted with chloroform (3×10 ml). The combined extract
was washed with a dilute solution of sodium carbonate and with water, dried over MgSO4, evaporated, and the
residue was triturated in a small amount of cold ethanol. The precipitate was filtered off and dried. Yield 0.28 g
(87%); mp 134-136°C (CHCl3). The 1H NMR spectrum agreed fully with the spectrum given in the work [14].
Reaction of 3-Bromothiophene (4) with Acetyl Chloride. A solution of 3-bromothiophene (4)
(0.64 ml, 6.8 mmol) and acetyl chloride (0.50 ml, 7.0 mmol) in dry CH2Cl2 (5 ml) was added dropwise over 20
min with stirring and cooling to a suspension of aluminum chloride (1.6 g, 12.0 mmol) in CH2Cl2 (10 ml). At
the end of the addition, the mixture was heated with stirring for 6 h to 40°C, poured onto ice (100 g), conc. HCl
(1 ml) was added, and the mixture was stirred for a further 1 h. The organic phase was separated, and the
aqueous layer was extracted with methylene chloride (3×25 ml). The combined extract was washed with
hydrochloric acid solution and with water, dried over Na2SO4 ,filtered and evaporated, after which 1.27 g (91%)
of a mixture of isomeric 2-acetyl-3-bromothiophene (9) and 2-acetyl-4-bromothiophene (12) was obtained in a
ratio of 10:1 (according to the 1H NMR spectrum).
REFERENCES
1.
2.
G. G. Abashev, A. Yu. Bushueva, and E. V. Shklyaeva, Khim. Geterotsikl. Soedin., 167 (2011). [Chem.
Heterocycl. Compd., 47, 130 (2011).]
К. Ogura, R. Zhao, Н. Yanai, К. Maeda, R. Tozawa. Sh. Matsumoto, and M. Akazome, Bull. Chem.
Soc. Jpn., 75, 2359 (2002).
3.
4.
5.
S. Varis, M. Ak, С. Tanyeli, I. M. Akhmedov, and L. Toppare, Eur. Polymer J., 42, 2352 (2006).
J. P. Zonde, M. R. J. Elsegood, and K. S. Ryder, Acta Cryst., C60, 0166 (2004).
L. I. Belen'kii, G. P. Gromova, and V. I. Smirnov, Khim. Geterotsikl. Soedin., 1356 (2008). [Chem.
Heterocycl. Compd., 44, 1092 (2008)].
6.
7.
Н. Stetter and M. Schreckenberg, Tetrahedron Lett., 14, 1461 (1973).
Н. Stetter and В. Rajh, Chem. Ber., 109, 534 (1976).
8.
9.
N. M. Nevar, A. V Kel'in, and O. G. Kulinkovich, Synthesis, 1259 (2000).
W. Horton, J. Org. Chem., 14, 761 (1949).
10.
11.
12.
A. Merz and F. Ellinger, Synthesis, 462 (1991).
P. E. Just, K. I. Chahe-Ching, and P. С. Lacaze, Tetrahedron, 58, 3467 (2002).
V. I. Smirnov, A. V. Afanas'ev, L. I. Belen'kii, Khim. Geterotsikl. Soedin., 1485 (2010). [Chem.
Heterocycl. Compd., 46, 1199 (2010)].
13.
14.
15.
S. E. Ellinger, Neue Synthesestrategie zu α- und α,ω-substituierten Oligo- und Polythiophenen und
deren Selbstorganisation, Diss., Ulm (2006).
V. Duchenet, С. G. Andrieu, J.-M. Catel, and G. Le Costumer, Phosphorus, Sulfur Silicon Relat. Elem.,
118, 117 (1996).
P. Bilik, F. Tanious, A. Kumar, W. D. Wilson, D. W. Boykin, P. Colson, С. Houssier, M. Facompré,
Ch. Tardy, and Ch. Bailly, ChemBioChem, 2, 559 (2001).
16.
17.
Ya. L. Goldfarb, G. P. Gromova, and L. I. Belen'kii, Izv. Akad. Nauk SSR, Ser. Khim., 1228 (1971).
V. A. Smirnov, A. V. Zimichev, G. A. Lyzhova, and A. E. Lipkin, Khim. Geterotsikl. Soedin., 35
(1982). [Chem. Heterocycl. Compd., 18, 28 (1982)].
18.
19.
V. A. Smirnov and A. E. Lipkin, USSR Pat. 341800; Byul. Izobret., No. 19, 101 (1972).
Weygand-Hilgetag, Experimental Methods in Organic Chemistry [Russian translation], Khimiya,
Moscow (1968), p. 234.
391