Helv. Chim. Acta 2018, 101, e1800049
[9] M. P. Sibi, ‘Chemistry of N-Methoxy-N-methylamides. Appli-
sodium deuteride (NaD) offers a new step-economical
alternative to prepare deuterated aldehydes with high
deuterium incorporation rate. The method exhibits
unique chemoselectivity for reduction of amides over
other carbonyl functions such as ketones. Further
investigation of the reactivity of NaH–iodide compos-
ites to develop other types of hydride reduction pro-
cesses is ongoing in our laboratory.
cations in Synthesis. A Review’, Org. Prep. Proced. Int. 1993,
25, 15 – 40.
[10] C. Douat, A. Heitz, J. Martinez, J.-A. Fehrentz, ‘Synthesis of
N-protected a-amino Aldehydes from Their Morpholine
Amide Derivatives’, Tetrahedron Lett. 2000, 41, 37 – 40.
[11] H. Liu, F. A. Kerdesky, L. A. Black, M. Fitzgerald, R. Henry, T.
A. Esbenshade, A. A. Hancock, Y. L. Bennani, ‘An Efficient
Multigram Synthesis of the Potent Histamine H3 Antago-
nist GT-2331 and the Reassessment of the Absolute Con-
figuration’, J. Org. Chem. 2004, 69, 192 – 194.
Supplementary Material
[12] N. S. Ramegowda, M. N. Modi, A. K. Koul, J. M. Bora, C. K.
Narang, N. K. Mathur, ‘A New Synthesis of Aldehydes from
Acids via Reduction of N-acyl Saccharins Using Sodium
dihydro bis-(2-methoxy-ethoxy) Aluminate’, Tetrahedron
1973, 29, 3985 – 3986.
Supporting information for this article is available on the
€
€
[13] G. Wittig, P. Hornberger, ‘Uber die Reduktion ungesattigter
Acknowledgements
€
€
Saureamide zu ungesattigten Aldehyden; ein Beitrag zum
Aufbau von Polyenketten’, Liebigs Ann. 1952, 577, 11 – 24.
[14] H. C. Brown, A. Tsukamoto, ‘Selective Reductions. I. The
Partial Reduction of Tertiary Amides with Lithium Alu-
minum Hydride. A New Aldehyde Synthesis via the 1-Acy-
laziridines’, J. Am. Chem. Soc. 1961, 83, 4549 – 4552.
[15] H. C. Brown, A. Tsukamoto, ‘The Reaction of 1-Acylaziri-
dines with Lithium Aluminium Hydride – A New Aldehyde
Synthesis’, J. Am. Chem. Soc. 1961, 83, 2016 – 2017.
[16] H. C. Brown, A. Tsukamoto, ‘Selective Reductions. V. The
Partial Reduction of Tertiary Amides by Lithium Di- and
Triethoxyaluminohydrides – A New Aldehyde Synthesis via
the Dimethylamides’, J. Am. Chem. Soc. 1964, 86,
1089 – 1095.
This work was financially supported by Nanyang
Technological University (NTU), Singapore Economic
Development Board (EDB), Pfizer Asia Pacific Pte. Ltd.,
and the Singapore Ministry of Education (Academic
Research Fund Tier 1: RG10/17). G. H. C. thanks to
EDB-Industrial Post-graduate Program (IPP) for the
scholarship support. We thank Prof. Han Sen Soo
and Mr. Zhonghan Hong (Division of Chemistry and
Biological Chemistry, NTU) for the assistance in pow-
der XRD experiments.
[17] H. C. Brown, A. Tsukamoto, ‘Lithium Diethoxyaluminohy-
dride as a Selective Reducing Agent – The Reduction of
Dimethylamides to Aldehydes’, J. Am. Chem. Soc. 1959, 81,
502 – 503.
[18] C. L. Bailey, A. Y. Joh, Z. Q. Hurley, C. L. Anderson, B. Sin-
garam, ‘Controlled Reduction of Tertiary Amides to the
Corresponding Alcohols, Aldehydes, or Amines Using
Dialkylboranes and Aminoborohydride Reagents’, J. Org.
Chem. 2016, 81, 3619 – 3628.
Author Contribution Statement
G. H. C., D. Y. O., and S. C. designed the studies. G. H.
C., D. Y. O., and Z. Y. performed the experiments. G. H.
C. and S. C. wrote the manuscript.
References
[19] S.-M. Woo, M.-E. Kim, D.-K. An, ‘New Synthetic Method of
[1] M. Hudlicky, ‘Reductions in Organic Chemistry’, Ellis Hor-
wood Ltd., Chichester, U.K., 1984.
Aldehydes
from
Tertiary
Amides
by
Lithium
Diisobutylpiperidinohydroaluminate (LDBPA)’, Bull. Korean
Chem. Soc. 2006, 27, 1913 – 1914.
[20] J. T. Spletstoser, J. M. White, A. R. Tunoori, G. I. Georg,
‘Mild and Selective Hydrozirconation of Amides to Aldehy-
des Using Cp2Zr(H)Cl: Scope and Mechanistic Insight’, J.
Am. Chem. Soc. 2007, 129, 3408 – 3419.
[21] Y. Zhao, V. Snieckus, ‘A Practical in situ Generation of the
Schwartz Reagent. Reduction of Tertiary Amides to Aldehy-
des and Hydrozirconation’, Org. Lett. 2014, 16, 390 – 393.
[22] J. M. White, A. R. Tunoori, G. I. Georg, ‘A Novel and Expedi-
tious Reduction of Tertiary Amides to Aldehydes Using
Cp2Zr(H)Cl’, J. Am. Chem. Soc. 2000, 122, 11995 – 11996.
[23] S. Bower, K. A. Kreutzer, S. L. Buchwald, ‘A Mild General
Procedure for the One-Pot Conversion of Amides to Alde-
hydes’, Angew. Chem. Int. Ed. 1996, 35, 1515 – 1516.
[24] F. Tinnis, A. Volkov, T. Slagbrand, H. Adolfsson, ‘Chemose-
lective Reduction of Tertiary Amides under Thermal Con-
trol: Formation of either Aldehydes or Amines’, Angew.
Chem. Int. Ed. 2016, 55, 4562 – 4566.
[2] J. Seyden-Penne, ‘Reductions by the Alumino- and Borohy-
drides in Organic Synthesis’, Wiley, New York, 1997.
[3] A. Volkov, F. Tinnis, T. Slagbrand, P. Trillo, H. Adolfsson,
‘Chemoselective Reduction of Carboxamides’, Chem. Soc.
Rev. 2016, 45, 6685 – 6697.
[4] A. M. Smith, R. Whyman, ‘Review of Methods for the Cat-
alytic Hydrogenation of Carboxamides’, Chem. Rev. 2014,
114, 5477 – 5510.
[5] J. Magano, J. R. Dunetz, ‘Large-Scale Carbonyl Reductions
in the Pharmaceutical Industry’, Org. Process Res. Dev.
2012, 16, 1156 – 1184.
[6] D. Addis, S. Das, K. Junge, M. Beller, ‘Selective Reduction of
Carboxylic Acid Derivatives by Catalytic Hydrosilylation’,
Angew. Chem. Int. Ed. 2011, 50, 6004 – 6011.
[7] S. Nahm, S. M. Weinreb, ‘N-methoxy-N-methylamides as
Effective Acylating Agents’, Tetrahedron Lett. 1981, 22,
3815 – 3818.
[8] S. Balasubramaniam, I. S. Aidhen, ‘The Growing Synthetic
Utility of the Weinreb Amide’, Synthesis 2008, 3707 – 3738.
(7 of 8) e1800049
© 2018 Wiley-VHCA AG, Zurich, Switzerland