Page 5 of 6
Journal of the American Chemical Society
9744-9748; (b) Bragg, R. A.; Sardana, M.; Artelsmair, M.; Elmore, C. S.
New trends and applications in carboxylation for isotope chemistry. J.
Label. Compd. Radiopharm. doi.org/10.1002/jlcr.3633.
Complexes. Angew. Chem. Int. Ed. 2008, 47, 5792-5795. (b) Boogaerts, I.
I. F.; Fortman, G. C.; Furst, M. R. L.; Cazin, C. S. J.; Nolan, S. P.
Carboxylation of N-H/C-H Bonds Using N-Heterocyclic Carbene
Copper(I) Complexes. Angew. Chem. Int. Ed. 2010, 49, 8674-8677. (c)
Zhang, L.; Cheng, J.; Ohishi, T.; Hou, Z. Copper-Catalyzed Direct
Carboxylation of C-H Bonds with Carbon Dioxide. Angew. Chem. Int. Ed.
2010, 49, 8670-8673. (d) Kuge, K.; Luo, Y.; Fujita, Y.; Mori, Y.; Onodera,
G.; Kimura, M. Copper-Catalyzed Stereodefined Construction of Acrylic
Acid Derivatives from Terminal Alkynes via CO2 Insertion. Org. Lett. 2017,
19, 854-857. (e) Juhl, M.; Laursen, S. L. R.; Huang, Y.; Nielsen, D. U.;
Daasbjerg, K.; Skrydstrup, T. Copper-Catalyzed Carboxylation of
Hydroborated Disubstituted Alkenes and Terminal Alkynes with Cesium
Fluoride. ACS Catalysis 2017, 7, 1392-1396.
(25)(a) Patra, T.; Maiti, D. Decarboxylation as the Key Step in C−C
Bond‐Forming Reactions. Chem. Eur. J. 2017, 23, 7382-7401; (b)
Tortajada, A.; Juli-Hernndez, F.; Börjesson, M.; Moragas, T.; Martin, R.
Transition-Metal-Catalyzed Carboxylation Reactions with Carbon Dioxide.
Angew. Chem. Int. Ed. 2018, 10.1002/anie.201803186.
(26) Font, M.; Quibell, J. M.; Perry, G. J. P.; Larrosa, I. The Use of
Carboxylic Acids as Traceless Directing Groups for Regioselective C–H
Bond Functionalisation. Chem. Commun. 2017, 53, 5584-5597.
(27) D. Audisio, T. Cantat, G. Destro, EP18305407 (2018).
1
2
3
4
5
6
7
8
(13) Derdau, V. New trends and applications in cyanation isotope
chemistry. J. Label. Compd. Radiopharm. doi.org/10.1002/jlcr.3630.
(14) Atzrodt, J.; Derdau, V.; Kerr, W. J.; Reid, M. Deuterium- and
Tritium-Labelled Compounds: Applications in the Life Sciences. Angew.
Chem. Int. Ed. 2018, 57, 3022-3047.
(15) Pony Yu, R.; Hesk, D.; Rivera, N.; Pelczer, I.; Chirik, P. J. Iron-
catalysed tritiation of pharmaceuticals. Nature, 2016, 529, 195-199.
(16) Loh, Y. Y.; Nagao, K.; Hoover, A. J.; Hesk, D.; Rivera, N. R.;
Colletti, S. L.; Davies, I. W.; MacMillan, D. W. C. Photoredox-catalyzed
Deuteration and Tritiation of Pharmaceutical Compounds Science,
2017, 358, 1182-1187.
(17) Voges, R.; Heys, J. R.; Moenius, T. Preparation of Compounds
Labeled with Tritium and Carbon-14 (John Wiley & Sons, 2009).
(18) During the submission of this manuscript, two works dealing with
carbon isotope exchange appeared. The first reporting 14C-carbon monoxide
exchange (a reagent generated from 14CO2, in a multi-step process) on
benzoic acid chlorides, see: Gauthier, Jr. D. R.; Rivera, N. R.; Yang, H.;
Schultz, D. M.; Shultz, C. S. Palladium-Catalyzed Carbon Isotope
Exchange on Aliphatic and Benzoic Acid Chlorides. J. Am. Chem. Soc.,
2018, 140, 15596–15600. The second work describes a two-step aliphatic
carboxylic acid exchange catalysed by nickel, see: Kingston, C.; Wallace,
M. A.; Allentoff, A. J.; deGruyter, J. N.; Chen, J. S.; Gong, S. X.; Bonacorsi,
Jr. S.; Baran, P. Direct Carbon Isotope Exchange Through Decarboxylative
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(28) Perry, G. J. P.; Larrosa, I. Recent Progress in Decarboxylative
Oxidative Cross‐Coupling for Biaryl Synthesis. Eur. J. Org. Chem. 2017,
3517-3527.
(29) Chaudhuri, N. K.; Potdar, S. V.; Ball, T. J. Synthesis of 14C-
Labeled Crotamiton. J. Label. Compd Radiopharm, 1982, 19, 75-82.
(30) For information, the curie (Ci) is a non-SI unit of radioactivity, but
since it is still very commonly utilized, please find the conversion: 1 Ci =
3.7×1010 Bq.
Carboxylation.
ChemRxiv.
Preprint,
doi.org/10.26434/chemrxiv.7318871.v1).
(19) Sakaguchi, K.; Green, M.; Stock, N.; Reger, T. S.; Zunic, J.; King
C. Glucuronidation of Carboxylic Acid Containing Compounds by UDP-
glucuronosyltransferase Isoforms Arch. Biochem. Biophys. 2004, 424, 219–
225.
(20) Kourist, R.; Guterl, J.-K.; Miyamoto, K.; Sieber, V. Enzymatic
Decarboxylation, an Emerging Reaction for Chemicals Production from
Renewable Resources. ChemCatChem, 2014, 6, 689-701.
(21) Sheng, X.; Patskovsky, Y.; Vladimirova, A.; Bonanno, J. B.;
Almo, S. C.; Himo, F.; Raushel, F. M. Mechanism and Structure of γ-
Resorcylate Decarboxylase. Biochemistry, 2018, 57, 3167-3175.
(22) Wei, Y.; Hu, P.; Zhang, M.; Su, W. Metal-Catalyzed
(31) Ellsworth, R. L.; Maxim, T. E.; Mertel, H. E. Synthesis of
p‐(di‐n‐propylsulfamyl)benzoic‐1‐(ring)‐14C
Acid
and
p‐(di‐n‐propylsulfamyl) benzoic acid‐14C (Probenecid‐14C). J. Label.
Compd. Radiopharm. 1978, 15, 111-115.
(32) Sharma, P. C.; Jain, A.; Jain, S. Fluoroquinolone Antibacterials: a
Review on Chemistry, Microbiology and Therapeutic Prospects. Acta Pol.
Pharm. 2009, 66, 587-604.
(33) Harrison, L. I.; Schuppan, D.; Rohlfing, S. R.; Hansen, A. R.;
Gerster, J. F.; Hansen, C. S.; Funk, M. L.; Ober, R. E. Disposition of
Radiolabeled Flumequine in Rat and Dog. Drug Metab. Dispos. 14, 555-
558 (1986).
Decarboxylative C–H Functionalization. Chem. Rev. 2017, 117, 8864
−
8907.
(23) Gooßen, L. J.; Deng, G.; Levy, L. M. Synthesis of Biaryls via
Catalytic Decarboxylative Coupling. Science, 2006, 313, 662-664.
(24) (a) Ohishi, T.; Nishiura, M.; Hou, Z. Carboxylation of
Organoboronic Esters Catalyzed by N-Heterocyclic Carbene Copper(I)
ACS Paragon Plus Environment