Organic Letters
Letter
(2) For reviews, see: (a) Butler, A.; Carter-Franklin, J. N. Nat. Prod.
Rep. 2004, 21, 180−188. (b) Butler, A.; Sandy, M. Nature 2009, 460,
848−854.
Scheme 5. Bromocyclization of 2-Geranylphenols 16
(3) For example, isoaplysin-20, a natural bromine-containing
diterpene from Aplysia kurodai, is reported to be biosynthesized via
the bromocyclization of geranylgeraniol. Yamamura, S.; Terada, Y.
Tetrahedron Lett. 1977, 18, 2171−2172.
(4) For reviews, see: (a) Snyder, S. A.; Treitler, D. S.; Brucks, A. P.
Aldrichimica Acta 2011, 44, 27−40. (b) Sakakura, A.; Ishihara, K. Chem.
Rec. 2015, 15, 728−742. (c) Chung, W.-j.; Vanderwal, C. D. Angew.
Chem., Int. Ed. 2016, 55, 4396−4434.
(5) (a) Wolinsky, L. E.; Faulkner, D. J. J. Org. Chem. 1976, 41, 597−
́
́
600. (b) Gonzalez, A. G.; Martin, J. D.; Perez, C.; Ramirez, M. A.
Tetrahedron Lett. 1976, 17, 137−138. (c) Murai, A.; Abiko, A.; Kato, K.;
Masamune, T. Chem. Lett. 1981, 10, 1125−1128. (d) Yamaguchi, Y.;
Uyehara, T.; Kato, T. Tetrahedron Lett. 1985, 26, 343−346.
(6) For the recent reports of the synthesis of the brominated
chamigrene sesquiterpenes, see: (a) Meier, R.; Trauner, D. Angew.
Chem., Int. Ed. 2016, 55, 11251−11255. (b) Burckle, A. J.; Vasilev, V.
H.; Burns, N. Z. Angew. Chem., Int. Ed. 2016, 55, 11476−11479.
̈
(c) Matsuura, B. S.; Kolle, P.; Trauner, D.; de Vivie-Riedle, R.; Meier, R.
ACS Cent. Sci. 2017, 3, 39−46. (d) Liu, C.; Chen, R.; Shen, Y.; Liang, Z.;
Hua, Y.; Zhang, Y. Angew. Chem., Int. Ed. 2017, 56, 8187−8190.
(7) (a) Snyder, S. A.; Treitler, D. S. Angew. Chem., Int. Ed. 2009, 48,
7899−7903. (b) Snyder, S. A.; Treitler, D. S.; Brucks, A. P. J. Am. Chem.
Soc. 2010, 132, 14303−14314.
In conclusion, we found that electron-deficient thiourea 5b
showed high catalytic activity in the biomimetic bromocycliza-
tion of geranyl derivatives. The reaction with NBS proceeded
rapidly in CH2Cl2 even at −78 °C to give the corresponding
products in high yields. The reactivity of the present
bromocyclization highly depends on the terminal substituents
of the substrates: geranyl TBS ether (1a) was rapidly converted
to the corresponding product 2a, while geranyl acetate (1b) was
inert under the same conditions. The reactivities of 4-
homogeranylarenes 13 depended on the electron density of
their aryl groups. The present bromocyclization could be
successfully applied to a synthesis of 4-isocymobarbatol (18b).
(8) (a) Lin, H.; Pochapsky, S. S.; Krauss, I. J. Org. Lett. 2011, 13,
1222−1225. (b) Shen, M.; Kretschmer, M.; Brill, Z. G.; Snyder, S. A.
Org. Lett. 2016, 18, 5018−5021.
̈
(9) Arnold, A. M.; Pothig, A.; Drees, M.; Gulder, T. J. Am. Chem. Soc.
2018, 140, 4344−4353.
(10) Recsei, C.; Chan, B.; McErlean, C. S. P. J. Org. Chem. 2014, 79,
880−887.
(11) Samanta, R. C.; Yamamoto, H. J. Am. Chem. Soc. 2017, 139,
1460−1463.
́
(12) Burckle, A. J.; Gal, B.; Seidl, F. J.; Vasilev, V. H.; Burns, N. Z. J.
ASSOCIATED CONTENT
* Supporting Information
■
Am. Chem. Soc. 2017, 139, 13562−13569.
S
(13) (a) Sawamura, Y.; Nakatsuji, H.; Sakakura, A.; Ishihara, K. Chem.
Sci. 2013, 4, 4181−4186. (b) Sawamura, Y.; Nakatsuji, H.; Akakura, M.;
Sakakura, A.; Ishihara, K. Chirality 2014, 26, 356−360. (c) Sawamura,
Y.; Ogura, Y.; Nakatsuji, H.; Sakakura, A.; Ishihara, K. Chem. Commun.
2016, 52, 6068−6071.
The Supporting Information is available free of charge on the
Experimental procedures and characterization data for all
(14) For reports on iodocyclization catalyzed by phosphorus(III)
compounds, see: (a) Sakakura, A.; Ukai, A.; Ishihara, K. Nature 2007,
445, 900−903. (b) Sakakura, A.; Ishihara, K. Chim. Oggi 2007, 25, 9−
12. (c) Sakakura, A.; Shomi, G.; Ukai, A.; Ishihara, K. Heterocycles 2010,
82, 249−255. (d) Nakatsuji, H.; Sawamura, Y.; Sakakura, A.; Ishihara,
K. Angew. Chem., Int. Ed. 2014, 53, 6974−6977.
(15) For reports on protocyclization catalyzed by Lewis bases, see:
(a) Sakakura, A.; Sakuma, M.; Ishihara, K. Org. Lett. 2011, 13, 3130−
3133. (b) Sakuma, M.; Sakakura, A.; Ishihara, K. Org. Lett. 2013, 15,
2838−2841.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
(16) (a) Denmark, S. E.; Burk, M. T. Proc. Natl. Acad. Sci. U. S. A.
2010, 107, 20655−20660. (b) Denmark, S. E.; Burk, M. T. Org. Lett.
2012, 14, 256−259. (c) Denmark, S. E.; Burk, M. T. Chirality 2014, 26,
344−355.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The authors gratefully thank the Division of Instrumental
Analysis, Department of Instrumental Analysis & Cryogenics,
Advanced Science Research Center, Okayama University for the
NMR and HRMS measurements.
(17) Zhou, L.; Tan, C. K.; Jiang, X.; Chen, F.; Yeung, Y.-Y. J. Am.
Chem. Soc. 2010, 132, 15474−15476.
(18) (a) Tripathi, C. B.; Mukherjee, S. J. Org. Chem. 2012, 77, 1592−
1598. (b) Jakab, G.; Hosseini, A.; Hausmann, H.; Schreiner, P. R.
Synthesis 2013, 45, 1635−1640.
(19) pKa value of thiourea 5c is almost the same as that of urea 5a.
Jakab, G.; Tancon, C.; Zhang, Z.; Lippert, K. M.; Schreiner, P. R. Org.
Lett. 2012, 14, 1724−1727.
REFERENCES
■
(1) For reviews, see: (a) Blunt, J. W.; Copp, B. R.; Munro, M. H. G.;
Northcote, P. T.; Prinsep, M. R. Nat. Prod. Rep. 2006, 23, 26−78.
(b) Blunt, J. W.; Copp, B. R.; Hu, W.-P.; Munro, M. H. G.; Northcote,
P. T.; Prinsep, M. R. Nat. Prod. Rep. 2009, 26, 170−244. (c) Blunt, J.
W.; Copp, B. R.; Keyzers, R. A.; Munro, M. H. G.; Prinsep, M. R. Nat.
Prod. Rep. 2012, 29, 144−222. (d) Wang, B.-G.; Gloer, J. B.; Ji, N.-Y.;
Zhao, J.-C. Chem. Rev. 2013, 113, 3632−3685.
D
Org. Lett. XXXX, XXX, XXX−XXX