LETTER
A Novel Synthesis of 4-Methyl-1,3-Dioxolane-4-Carbaldehydes
305
(9) a) Fuganti, C.; Servi, S.; Zirotti, C. Tetrahedron Lett. 1983,
24, 5285. b) Pottie, M.; Van der Eyken, J.; Vandewalle, M.
Tetrahedron Lett. 1989, 30, 5319. c) Seu, Y.-B.; Kho, Y.-H.
Tetrahedron Lett. 1992, 33, 7015. d) Wirz, B.; Barner, R.;
Hübscher, J. J. Org. Chem. 1993, 58, 3980. e) Chen, S.-T.;
Fang, J.-M. J. Org. Chem. 1997, 62, 4349.
(10) a) Tanner, D.; Somfai, P. Tetrahedron 1986, 42, 5985.
b) Hale, K. J.; Manaviazar, S.; Peak, S. A. Tetrahedron Lett.
1994, 35, 425.
(11) Frauenrath, H.; Reim, S.; Wiesner, A. Tetrahedron: Asymme-
try 1998, 9, 1103.
(12) a) Meerwein, H. In Houben-Weyl, 4th. ed., Vol. 6/3; E. Mül-
ler, Ed.; Thieme: Stuttgart, 1965; pp 118, 196, 262. b) Swern,
D., Ed. Organic Peroxides, Vol. II; Wiley: New York, 1971;
486. c) Frimer, A. A. Synthesis 1977, 578; and references cited
therein. d) Hoppe, D.; Lüßmann, J.; Jones, P. G.; Schmidt, D.;
Sheldrick, G. M. Tetrahedron Lett. 1986, 27, 3591
e) Frauenrath, H. In Houben-Weyl, 4th ed., Vol. E15/Part 1;
Kropf, H.; Schaumann, E., Ed.; Thieme: Stuttgart, 1993; p
306.
Scheme 4
(13) Purchased from Acros Organics, Fisher Scientific GmbH,
Germany.
(14) For the purification of commercially available m-CPBA, see:
a) Schwartz, N. N.; Blumbergs, J. H. J. Org. Chem. 1964, 29,
1976. b) Fieser, L. F.; Fieser, M. Reagents for Organic Syn-
thesis; Wiley: New York, 1967; Vol. 1, p 135.
In summary, m-CPBA oxidation of 5-methyl-4H-1,3-di-
oxins 5 in dichloromethane and acid-induced ring-con-
traction of the primarily formed acylals 6 provide a
practical method for the synthesis of 4-methyl-1,3-diox-
olane-4-carbaldehydes 2. The procedure is generally ap-
plicable to 4H-1,3-dioxins. Work on the synthesis of
enantiomerically pure carbaldehydes 2 by starting with
enantiomerically pure 5-methyl-4H-1,3-dioxins 5 is cur-
rently in progress.
(15) All new compounds gave satisfactory spectroscopic and
microanalytical data. Selected data of 2d (diastereomeric ratio
A/B = 75:25). - 1H-NMR of diastereomer A (500 MHz,
CDCl3): δ = 0.96 (9H, s, tert-Bu), 1.34 (3H, s, Me), 3.59 (1H,
d, 2J = 9.0, CHHO), 4.30 (1H, d, 2J = 9.0, CHHO), 4.74 (1H,
s, O-CHR-O), 9.62 (1H, s, CHO). - 13C-NMR (125 MHz,
CDCl3): δ = 18.4 (1C, Me), 24.3 (3C, tert-Bu), 34.0 (1C, tert-
Bu), 72.8 (1C, OCH2), 83.4 (1C, C-CHO), 111.0 (1C, O-CHR-
O), 201.8 (1C, CHO). - MS(PCI, m/z (%)): 173 (68), 157 (8),
143 (11), 87 (100). - 1H-NMR of diastereomer B (500 MHz,
CDCl3): δ = 0.95 (9H, s, tert-Bu), 1.37 (3H, s, Me), 3.65 (1H,
d, 2J = 8.4, CHHO), 4.05 (1H, d, 2J = 8.4, CHHO), 4.69 (1H,
s, O-CHR-O), 9.70 (1H, s, CHO). - 13C-NMR (125 MHz,
CDCl3): δ = 19.1 (1C, Me), 24.2 (3C, tert-Bu), 34.4 (1C, tert-
Bu), 70.7 (1C, OCH2), 84.1 (1C, C-CHO), 111.1 (1C, O-CHR-
O), 202.0 (1C, CHO). - MS(PCI, m/z (%)): 173 (67), 157 (10),
143 (12), 87 (100).
(16) Selected data of 6d (diastereomeric ratio A/B/C/D =
36:48:9:7). - 1H-NMR of diastereomer A (500 MHz, CDCl3):
δ = 0.92 (9H, s, tert-Bu), 1.12 (3H, s, Me), 2.56 (1H, s, OH),
3.80 (1H, dd, 2J = 11.6, 4J = 1.9, OCHH (eq)), 4.04 (1H, d,
2J = 11.6, OCHH (ax)), 4.58 (1H, s, OCHRO), 6.06 (1H, d,
4J = 1.9, O-CH-O(C=O)), 7.45 (1H, dd, 3J = 7.8, 3J = 8.0,
ArH), 7.60 (1H, ddd, 3J = 8.0, 4J = 2.1, 4J = 1.1, ArH), 7.96
(1H, ddd, 3J = 7.8, 4J = 1.6, 4J = 1.1, ArH), 8.01 (1H, dd,
4J = 1.6, 4J = 2.1, ArH). - 1H-NMR of diastereomer B (500
MHz, CDCl3): δ = 0.90 (9H, s, tert-Bu), 1.53 (3H, d, 4J = 0.8,
Me), 2.56 (1H, s, OH), 3.73 (1H, dd, 2J = 10.8, 4J = 1.6, OCHH
(eq)), 3.95 (dq, 1H, 2J = 10.8, 4J = 0.8, OCHH (ax)), 4.59 (1H,
s, OCHRO), 6.13 (1H, d, 4J = 1.6, O-CH-O(C=O)), 7.39 (1H,
dd, 3J = 7.7, 3J = 8.0, ArH), 7.55 (1H, ddd, 3J = 8.0, 4J = 1.1,
4J = 2.2, ArH), 7.94 (1H, ddd, 3J = 7.7, 4J = 1.1, 4J = 1.7, ArH),
7.99 (1H, dd, 4J = 1.7, 4J = 2.2, ArH). - 1H-NMR of diastereo-
mer C (500 MHz, CDCl3): δ = 0.95 (9H, s, tert-Bu), 1.12 (3H,
s, Me), 2.56 (1H, s, OH), 3.65 (1H, d, 2J = 11.8, OCHH (eq)),
3.86 (1H, d, 2J = 11.8, OCHH (ax)), 4.40 (1H, s, OCHRO),
5.86 (1H, s, O-CH-O(C=O)), 7.40 (1H, dd, 3J = 8.0, 3J = 8.0,
ArH), 7.58 (1H, ddd, 3J = 8.0, 4J = 2.2, 4J = 1.1, ArH), 7.94
(1H, ddd, 3J = 8.0, 4J = 1.1, 4J = 1.7, ArH), 8.11 (dd, 1H, 4J =
2.2, 4J = 1.7, ArH). - 1H-NMR of diastereomer D (500 MHz,
CDCl3): δ = 0.97 (s, 9H, tert-Bu), 2.09 (s, 3H, Me), 2.56 (1H,
Acknowledgement
This work was supported by the Fonds der Chemischen Industrie.
References and Notes
(1) Nicolaou, K. C.; Theodorakis, E. A.; Rutjes, F. P. J. T.; Sato,
M.; Tiebes, J.; Xiao, X.-Y.; Hwang, C.-K.; Duggan, M. E.;
Yang, Z.; Couladouros, E. A.; Sato, F.; Shin, J.; He, H.-M.;
Bleckman, T. J. Am. Chem. Soc. 1995, 117, 10239.
(2) For example, see: a) Yamaura, M.; Nakayama, T.; Hashimoto,
H.; Shin, C.; Yoshimura, J.; Kodama, H. J. Org. Chem. 1988,
53, 6035. b) Williams, R. M.; Armstrong, R. W.; Dung, J.-S.
J. Am. Chem. Soc. 1985, 107, 3253. c) Williams, R. M.; Arm-
strong, R. W.; Dung, J.-S. J. Am. Chem. Soc. 1984, 106, 5748.
(3) Barner, R.; Schmid, M. Helv. Chim. Acta 1979, 62, 2384.
(4) For example, see: a) Mori, K. Tetrahedron 1975, 31, 1381.
b) Naef, R.; Seebach, D. Liebigs Ann. Chem. 1983, 1930.
c) Braun, M. Frontalin, In: Organic Synthesis Highlights,
Mulzer, J.; Altenbach, H.-J.; Braun, M.; Krohn, K.; Reissig,
H.-U., Eds.; Verlag Chemie: Weinheim, 1991, p 335.
(5) a) Balou, C. E.; Fischer, H. O. L. J. Am. Chem. Soc. 1955, 77,
3329. b) Bischofberger, N.; Waldwann, H.; Saito, T.; Simon,
E. S.; Lees, W.; Bednarski, M. D.; Whitesides, G. M. J. Org.
Chem. 1988, 53, 3457.
(6) Baggett, N.; Stribblehill, P. Carbohydr. Res. 1981, 96, 41; see
also: a) Yoshimura, J.; Hara, K.; Yamaura, M.; Mikami, K.;
Hashimoto, H. Bull. Chem. Soc. Jpn. 1982, 55, 933.
b) Yamaura, M.; Suzuki, T.; Tagami, Y.; Hashimoto, H.;
Yoshimura, J. Carbohydr. Chem. 1988, 181, 267.
(7) Thompson, D. K.; Suzuki, N.; Hegedus, L. S.; Satoh, Y. J.
Org. Chem. 1992, 57, 1461.
(8) Dung, S.-J.; Armstrong, R. W.; Anderson, Williams, R. M. J.
Org. Chem. 1983, 48, 3592.
Synlett 1999, No. 3, 303–306 ISSN 0936-5214 © Thieme Stuttgart · New York