ORGANIC
LETTERS
2003
Vol. 5, No. 21
4007-4009
Enantiospecific Formal Total Syntheses
of (−)-Salicylihalamides A and B from
D-Glucose and L-Rhamnose
KyoungLang Yang, Torsten Haack, Burchelle Blackman, Wibke E. Diederich,
Subho Roy, Srinivas Pusuluri, and Gunda I. Georg*
Department of Medicinal Chemistry, Center for Cancer Experimental Therapeutics and
Drug DiscoVery Program, Higuchi Biosciences Center, UniVersity of Kansas,
1251 Wescoe Hall DriVe, Lawrence, Kansas 66045-7582
Received August 27, 2003
ABSTRACT
Two formal chiral pool syntheses of the (−)-salicylihalamides A and B were achieved from commercially available 1,2,5,6-diacetone-D-glucose
and L-rhamnose.
The salicylihalamides A and B1 belong to a family of recently
discovered natural products that contain a salicylic acid
moiety, a macrolactone, and an unusual enamide side chain.
This class of molecules, which includes the oximidines I and
II,2 the lobatamides A-F,3 and apicularens A and B,4 shows
considerable potency and differential cytotoxicity in the 60-
cancer cell line assay of the NCI.5 The salicylihalamides 1
and 2, isolated from Haliclona sp. in 1997,1 have received
substantial attention, resulting in several partial and total
syntheses.6 In our initial approach toward the synthesis of
the macrocyclic core of the salicylihalamides, we chose a
chiral pool strategy using commercially available 1,2,5,6-
diacetone-D-glucose as the starting material.6e However, since
the absolute stereochemistry of the salicylihalamides was
revised by total synthesis,6a we needed to modify our strategy
in order to prepare the naturally occurring salicylihalamides.
Herein, we report two chiral pool approaches toward the
synthesis of the (-)-salicylihalamides A and B. One of them
is also based on using 1,2,5,6-diacetone-D-glucose6e as the
starting material, while the other one employs L-rhamnose,
both leading to the formal total synthesis of the salicylihala-
mides.
(6) (a) Wu, Y.; Esser, L.; De Brabander, J. K. Angew. Chem., Int. Ed.
2000, 39, 4308-4310. (b) Fu¨rstner, A.; Thiel, O. R.; Blanda, G. Org. Lett.
2000, 2, 3731-3734. (c) Wu, Y.; Seguil, O. R.; De Brabander, J. K. Org.
Lett. 2000, 2, 4241-4244. (d) Labrecque, D.; Charron, S.; Rej, R.; Blais,
C.; Lamothe, S. Tetrahedron Lett. 2001, 42, 2645-2648. (e) Georg, G. I.;
Ahn, Y. M.; Blackman, B.; Farokhi, F.; Flaherty, P. T.; Mossman, C. J.;
Roy, S.; Yang, K. L. J. Chem. Soc., Chem. Commun. 2001, 255-256. (f)
Smith, A. B.; Zheng, J. Synlett 2001, 1019-1023. (g) Snider, B. B.; Song,
F. Org. Lett. 2001, 3, 1817-1820. (h) Fu¨rstner, A.; Dierkes, T.; Thiel, O.
R.; Blanda, G. Chem. Eur. J. 2001, 7, 5286-5298. (i) Wu, Y.; Liao, X.;
Wang, R.; Xie, X.; De Brabander, J. K. J. Am. Chem. Soc. 2002, 124, 3245-
3253. (j) Smith, A. B.; Zheng, J. Tetrahedron 2002, 58, 6455-6471. (k)
Bauer, M.; Maier, M. M. Org. Lett. 2002, 4, 2205-2208. (l) Holloway, G.
A.; Hu¨gel, H.; Rizzacasa, M. A. J. Org. Chem. 2003, 68, 2200-2204.
(1) Erickson, K. L.; Beutler, J. A.; Cardellina, J. H., II; Boyd, M. R. J.
Org. Chem. 1997, 62, 8188-8192.
(2) Kim, J. W.; Shin-ya, K.; Furihata, K.; Hayakawa, Y.; Seto, H. J.
Org. Chem. 1999, 64, 153-155.
(3) McKee, T. C.; Galinis, D. L.; Pannell, L. K.; Cardellina, J. H., II;
Lakkso, J.; Ireland, C. M.; Murray, L.; Capon, R. J.; Boyd, M. R. J. Org.
Chem. 1998, 63, 7805-7810.
(4) Jansen, R.; Kunze, B.; Reichenbach, H.; Ho¨fle, G. Eur. J. Org. Chem.
2000, 6, 913-919.
(5) Boyd, M. R.; Farina, C.; Belfiore, P.; Gagliardi, S.; Kim, J. W.;
Hayakawa, Y.; Beutler, J. A.; McKee, T. C.; Bowman, B. J.; Bowman, E.
J. J. Pharmacol. Exp. Ther. 2001, 297, 114-120.
10.1021/ol035630v CCC: $25.00 © 2003 American Chemical Society
Published on Web 09/20/2003