Paper
Dalton Transactions
derived from Ph2P(CH2)nPPh2 (n = 1, 2), where the proximity of 16 J. M. Bayne and D. W. Stephan, Chem. Soc. Rev., 2016, 45,
the cationic centres is imposed.
765–774.
17 D. Gudat, A. Haghverdi, H. Hupfer and M. Nieger, Chem. –
Eur. J., 2000, 6, 3414–3417.
Conclusions
The species [CpFe(η5-C5H4PFPh2)][B(C6F5)4]
18 A. L. Brazeau, C. A. Caputo, C. D. Martin, N. D. Jones and
P. J. Ragogna, Dalton Trans., 2010, 39, 11069–11073.
19 M. Well, P. G. Jones and R. Schmutzler, J. Fluorine Chem.,
1991, 53, 261–275.
20 C. A. Dyker and N. Burford, Chem. – Asian J., 2008, 3, 28–
36.
3
and [Fe(η5-
C5H4PFPh2)2] [B(C6F5)4]2 4, are easily prepared from commer-
cially or readily available phosphine precursors by oxidation
with XeF2 and subsequent fluoride abstraction. These Lewis
acids are effective catalysts for Friedel–Crafts dimerization of
1,1-diphenylethylene, dehydrocoupling of phenol and triethyl-
silane, hydrodefluorination of 1-fluoropentane and the deoxy-
genation of a series of ketones. The present systems show
activities that are comparable to several of the EPC systems we
have previously reported, although the monocation 3 showed
lower activity than the dication 4. This further indicates the
enhanced Lewis acidity that results from a dicationic Lewis
acidic phosphonium cation. We are continuing to explore and
develop the range of EPCs that are effective Lewis acid catalysts
for a broadening range of useful organic transformations.
21 M. H. Holthausen, A. Hepp and J. J. Weigand, Chem. – Eur.
J., 2013, 19, 9895–9907.
22 M. H. Holthausen, K. O. Feldmann, S. Schulz, A. Hepp and
J. J. Weigand, Inorg. Chem., 2012, 51, 3374–3387.
23 L. E. Longobardi, C. A. Russell, M. Green, N. S. Townsend,
K. Wang, A. J. Holmes, S. B. Duckett, J. E. McGrady and
D. W. Stephan, J. Am. Chem. Soc., 2014, 136, 13453–13457.
24 T. W. Hudnall, Y. M. Kim, M. W. P. Bebbington,
D. Bourissou and F. P. Gabbaï, J. Am. Chem. Soc., 2008, 130,
10890–10891.
25 O. Sereda, S. Tabassum and R. Wilhelm, in Top Curr.
Chem., 2010, vol. 291, pp. 349–393.
26 G. Wittig and U. Schöllkopf, Chem. Ber., 1954, 87, 1318–
1330.
Acknowledgements
27 G. Wittig and U. Schoellkopf, Org. Synth., 1960, 40, 66–68.
28 C. B. Caputo, L. J. Hounjet, R. Dobrovetsky and
D. W. Stephan, Science, 2013, 341, 1374–1377.
29 M. H. Holthausen, R. R. Hiranandani and D. W. Stephan,
Chem. Sci., 2015, 6, 2016–2021.
30 M. H. Holthausen, J. M. Bayne, I. Mallov, R. Dobrovetsky
and D. W. Stephan, J. Am. Chem. Soc., 2015, 137, 7298–
7301.
D.W.S gratefully acknowledges the financial support of the
NSERC of Canada and the award of a Canada Research Chair.
Notes and references
1 P. P. Power, Nature, 2010, 463, 171–177.
2 W. E. Piers and T. Chivers, Chem. Soc. Rev., 1997, 26, 345–
354.
31 M. H. Holthausen, M. Mehta and D. W. Stephan, Angew.
Chem., Int. Ed., 2014, 53, 6538–6541.
3 G. Kehr and G. Erker, Chem. Sci., 2016, 7, 56–65.
4 B. H. Huang, S. Dutta and C. C. Lin, Compr. Inorg. Chem. II, 32 M. Pérez, L. J. Hounjet, C. B. Caputo, R. Dobrovetsky and
2013, 1, 1217–1249. D. W. Stephan, J. Am. Chem. Soc., 2013, 135, 18308–18310.
5 L. J. Murphy, K. N. Robertson, J. D. Masuda and 33 M. Pérez, C. B. Caputo, R. Dobrovetsky and D. W. Stephan,
J. A. C. Clyburne, N-Heterocycl. Carbenes, 2014, 427–497. Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 10917–10921.
6 Y. Nakajima and S. Shimada, RSC Adv., 2015, 5, 20603– 34 M. Pérez, Z. W. Qu, C. B. Caputo, V. Podgorny,
20616.
L. J. Hounjet, A. Hansen, R. Dobrovetsky, S. Grimme and
D. W. Stephan, Chem. – Eur. J., 2015, 21, 6491–6500.
35 T. vom Stein, M. Pérez, R. Dobrovetsky, D. Winkelhaus,
C. B. Caputo and D. W. Stephan, Angew. Chem., Int. Ed.,
2015, 54, 10178–10182.
7 K. Revunova and G. I. Nikonov, Dalton Trans., 2015, 44,
840–866.
8 G. C. Welch, R. R. S. Juan, J. D. Masuda and D. W. Stephan,
Science, 2006, 314, 1124–1126.
9 L. J. Hounjet and D. W. Stephan, Org. Process Res. Dev., 36 M. Mehta, M. H. Holthausen, I. Mallov, M. Perez, Z. W. Qu,
2014, 18, 385–391.
10 D. W. Stephan and G. Erker, Angew. Chem., Int. Ed., 2015,
54, 6400–6441.
11 D. W. Stephan and G. Erker, Chem. Sci., 2014, 5, 2625–
2641.
12 D. W. Stephan and G. Erker, Angew. Chem., Int. Ed., 2010,
49, 46–76.
S. Grimme and D. W. Stephan, Angew. Chem., Int. Ed., 2015,
54, 8250–8254.
37 J. M. Bayne, M. H. Holthausen and D. W. Stephan, Dalton
Trans., 2016, DOI: 10.1039/C1035DT03796D.
38 R. K. Schmidt, K. Müther, C. Mück-Lichtenfeld, S. Grimme
and M. Oestreich, J. Am. Chem. Soc., 2012, 134, 4421–4428.
39 K. Müther, R. Fröhlich, C. Mück-Lichtenfeld, S. Grimme
and M. Oestreich, J. Am. Chem. Soc., 2011, 133, 12442–
12444.
13 D. W. Stephan, J. Am. Chem. Soc., 2015, 137, 10018–10032.
14 D. W. Stephan, Acc. Chem. Res., 2015, 48, 306–316.
15 S. A. Weicker and D. W. Stephan, Bull. Chem. Soc. Jpn., 40 K. Müther, P. Hrobárik, V. Hrobériková, M. Kaupp and
2015, 88, 1003–1016.
M. Oestreich, Chem. – Eur. J., 2013, 19, 16579–16594.
Dalton Trans.
This journal is © The Royal Society of Chemistry 2016