2ꢀ,7-Bisacetyltaxol (2), mp 207–208ꢃC, [ꢄ] –49.2ꢃ (c 1, CHCl ). H NMR (300 MHz, CDCl , ꢅ, ppm, J/Hz): 1.16
D 3 3
O
RO
RO
O
OR
OR
O
COOH
a
O
HO
O
O
H
OBz
BocN
O
Boc
N
O
H
HO
HO
OBz
OAc
OAc
6
10-DAB, 3, 3a
4, 4a
b
10-DAB: R = H; 3: R = COOCH CCl
4: R = COOCH CCl (99%)
2
3
2
3
3a: R = Ac
4a: R = Ac (60%)
O
O
AcO
O
RO
O
OR
OAc
OAc
NH
O
NH
O
c
O
O
OH
OAc
O
O
H
OBz
H
HO
HO
2 (60%)
OBz
OAc
5, 5a
5: R = COOCH CCl (98%); 5a: R = Ac (20%)
2
3
a. 6, DCC, DMAP, toluene; b. i) HCOOH, ii) benzoyl chloride, NaHCO , EtOAc/H O; c. i) Zn, AcOH/MeOH, ii) Ac O/Py
3
2
2
Scheme 1. Semisynthesis of 2ꢀ,7-bisacetyltaxol from 10-DAB.
20
1
(3H, s), 1.21 (3H, s), 1.81 (3H, s), 1.87 (3H, s), 2.03 (3H, s), 2.16 (6H, 2s), 2.37 (1H, m), 2.44 (3H, s), 2.62 (1H, m), 3.95 (1H,
d, J = 7.2), 4.26 (2H, dd, J = 8.4, 8.1), 4.96 (1H, d, J = 8.1), 5.58 (2H, m), 5.69 (1H, d, J = 6.9), 5.94 (1H, d, J = 3.3), 5.97 (1H,
d, J = 3.0), 6.24 (2H, m), 6.92 (1H, d, J = 9.0), 7.44 (7H, m), 7.51 (3H, t), 7.61 (1H, t) 7.75 (2H, d, J = 7.2), 8.12 (2H, d, J = 6.9).
13
C NMR (75 MHz, CDCl , ꢅ): 10.07, 14.32, 14.64, 20.68, 20.92, 21.30, 21.46, 22.80, 22.86, 26.67, 31.79, 33.54, 35.64,
3
43.48, 47.15, 53.03, 56.22, 71.58, 71.98, 73.98, 74.78, 75.47, 76.57, 77.43, 78.90, 81.12, 84.23, 126.77, 127.29, 128.68,
128.97, 129.28, 129.36, 130.41, 132.24, 132.71, 133.93, 137.17, 141.35, 167.15, 167.36, 168.41, 169.08, 169.82, 170.01,
170.54, 202.28.
The above reaction sequence is suitable for large-scale synthesis. Following the present route, we can efficiently
prepare multigrams of the target taxol acetate 2 in high overall yield.
REFERENCES
1.
2.
3.
M. C. Wani, H. L. Taylor, M. E. Wall, P. Coggon, and A. T. McPhail, J. Am. Chem. Soc., 93, 2325 (1971).
E. K. Rowinsky, L. A. Cazenave, and R. C. Donehower, J. Natl. Cancer Inst., 82, 1247 (1990).
a) P. B. Schiff, J. Fant, and S. B. Horwitz, Nature, 277, 665 (1979); b) J. J. Manfredi and S. B. Horwitz,
Pharmacol. Ther., 25, 83 (1984).
4.
a) D. G. I. Kingston, History and Chemistry, in Paclitaxel in Cancer Treatment, W. P. Mcguire and E. K. Rowinski,
(eds.), Marcel Dekker, New York, Basel, Hong Kong, 8, 1995, pp. 1–33; b) Y. F. Wang, Q. W. Shi, M. Dong,
H. Kiyota, Y. C. Gu, and B. Cong, Chem. Rev., 111, 7652 (2011).
5.
6.
D. G. I. Kingston, D. R. Hawkins, and L. J. Ovington, J. Nat. Prod., 45, 466 (1982).
a) J. Parness, D. G. I. Kingston, R. G. Powell, C. Harracksingh, and S. B. Horwitz, Biochem. Biophys. Res. Commun.,
105, 1082 (1982); b) W. Mellado, N. F. Magri, D. G. I. Kingston, R. Garcia-Arenas, G. A. Orr, and S. B. Horwitz,
Biochem. Biophys. Res. Commun., 124, 329 (1984).
7.
A. Commercon, D. Bezard, F. Bernard, and J. D. Bourzat, Tetrahedron Lett., 33, 5185 (1992).
703