C O M M U N I C A T I O N S
Table 2. Scope of the Regio- and Diastereoselective TST
Rhodium-Catalyzed [4+2+2] Cycloisomerization with Various
Carbon- and Heteroatom-Tethered 1,6-Enynesa
Pharmaceuticals for the CreatiVity in Organic Chemistry Award
(P.A.E.). Roche Pharmaceuticals is kindly acknowledged for an
Excellence in Chemistry Award (E.W.B.).
1,6-enyne 1
Supporting Information Available: Experimental procedures,
X-ray crystallographic analysis of 2a and 3a (where X ) NTs, R )
Me), and spectral data for (E)- and (Z)-1, 2a, and 3a. This material is
entry
X
E/Z
R
dsb,c
yield (%)d
1
2
3
4
5
6
7
8
9
NTs
“
“
“
O
“
“
“
E
“
Z
“
E
“
Z
“
E
“
Z
“
H
Me
H
Me
H
Me
H
Me
H
2a
“
3a
“
2a
“
3a
“
2a
“
3a
“
g19:1
g19:1
g19:1
g19:1
g19:1
g19:1
g19:1
g19:1
g19:1
g19:1
g19:1
g19:1
75
85
60
71
73
85
39
44
86
88
71
74
References
(1) (a) Evans, P. A.; Robinson, J. E.; Baum, E. W.; Fazal, A. N. J. Am. Chem.
Soc. 2002, 124, 8782. (b) Evans, P. A.; Robinson, J. E.; Baum, E. W.;
Fazal, A. N. J. Am. Chem. Soc. 2003, 125, 14648.
(2) For another example of a rhodium-catalyzed [4+2+2] carbocyclization
reaction, see: Gilbertson, S. R.; DeBoef, B. J. Am. Chem. Soc. 2002,
124, 8784.
(3) For related metal-catalyzed [4+2+2] carbocyclization reactions, see: (a)
Greco, A.; Carbonaro, A.; Dall’Asta, G. J. Org. Chem. 1970, 35, 271. (b)
Carbonaro, A.; Cambisi, F.; Dall’Asta, G. J. Org. Chem. 1971, 36, 1443.
(c) Lyons, J. E.; Myers, H. K.; Schneider, A. Ann. N.Y. Acad. Sci. 1980,
333, 273. (d) Lautens, M.; Tam, W.; Lautens, J. C.; Edwards, L. G.;
Crudden, C. M.; Smith, A. C. J. Am. Chem. Soc. 1995, 117, 6863. (e)
Varela, J. A.; Castedo, L.; Saa´, C. Org. Lett. 2003, 5, 2841.
(4) For examples of other rhodium-catalyzed carbocyclization reactions leading
to eight-membered rings, see: (a) [6+2]: Wender, P. A.; Correa, A. G.;
Sato, Y.; Sun, R. J. Am. Chem. Soc. 2000, 122, 7815. (b) [5+2+1]:
Wender, P. A.; Gamber, G. G.; Hubbard, R. D.; Zhang, L. J. Am. Chem.
Soc. 2002, 124, 2876.
C(CO2Et)2
10
11
12
“
“
“
Me
H
Me
a All reactions (0.25 mmol) were carried using 20 mol % [(COD)-
Rh(Np)]SbF6 in MeCN at 110 °C (0.08 M). b Diastereoselectivity (ds) was
determined by 400 MHz NMR on the crude reaction mixtures. c The relative
configuration of 2a and 3a (where X ) NTs, R ) Me) was proven by
1
X-ray crystallography and related by analogy to the H NMR of the other
tethers. d Isolated yields.
(5) Treatment of the 1,6-enyne i with piperylene iia gave no reaction, whereas
isoprene iib afforded the cycloadducts iii/iv in 60% yield, as a 1:1 mixture
of regioisomers.
(6) Nishiyama, H.; Kitajima, T.; Matsumoto, M.; Itoh, K. J. Org. Chem. 1984,
49, 2298.
(7) Stork, G.; Kahn, M. J. Am. Chem. Soc. 1985, 107, 500.
(8) For recent reviews on TST strategies, see: (a) White, J. D.; Carter, R. G.
In Science of Synthesis: Houben-Weyl Methods of Molecular Transforma-
tions; Fleming, I., Ed.; Georg Thieme Verlag: New York, 2001; Vol. 4,
pp 371-412. (b) Skrydstrup, M. In Science of Synthesis: Houben-Weyl
Methods of Molecular Transformations; Fleming, I., Ed.; Georg Thieme
Verlag: New York, 2001; Vol. 4, pp 439-530 and pertinent references
therein.
(9) For examples of metal-mediated and metal-catalyzed TST carbocyclization
reactions, see: (a) Kagoshima, H.; Hayashi, M.; Yukihiko, H.; Saigo, K.
Organometallics 1996, 15, 5439. (b) Brummond, K. M.; Sill, P. C.;
Rickards, B.; Geib, S. J. Tetrahedron Lett. 2002, 43, 3735 and references
therein.
(10) For an example of an ene-cycloisomerization and the consequence of olefin
geometry, see: Cao, P.; Wang, B.; Zhang, X. J. Am. Chem. Soc. 2000,
122, 6490.
(11) The 1,6-enyne (Z)-1 (where X ) NTs, R ) H) was prepared using the
three-step protocol outlined below. Mitsunobu coupling of the allylic
alcohol 5 with the propargyl sulfonamide 4 furnished the allylic sulfona-
mide 6. The tert-butyldimethylsilyl ether 6 was deprotected, and the
primary alcohol coupled with the diene 7 to afford (Z)-1 in 87% overall
yield (3 steps).
Figure 1. Proposed transition structures for the observed diastereoselectivity
in the [4+2+2] with 1,6-enynes (E)- and (Z)-1.
and subsequent isomerization of the (E)- and (Z)-enynes 1 presum-
ably result in the formation of the requisite metallacyclopentenes.
The diastereoselectivity observed in the resulting intramolecular
rhodium-catalyzed [4+2+2] cycloisomerization is consistent with
the identical orientation of the diene in both cases. This preference
can be attributed to a nonbonding interaction between one of the
isopropyl groups on silicon and the C-2 proton on the 1,3-butadiene
derivative.14
In conclusion, we have developed a regiospecific and diastereo-
selective intramolecular temporary silicon-tethered rhodium-
catalyzed [4+2+2] cycloisomerization reaction of a tethered enyne
for the construction of tricyclic eight-membered heterocycles and
carbocycles. This methodology also allows (E)- and (Z)-olefins to
be utilized in a stereospecific manner. The ability to incorporate
either alkene geometry is particularly significant, since related
carbocyclization reactions are often limited in this respect. Finally,
the ability to utilize carbon-tethered 1,6-enynes and to regiospe-
cifically incorporate substituted 1,3-butadiene derivatives provides
exciting opportunities for future applications toward the total
synthesis of cyclooctanoid-containing diterpenes.
(12) This catalyst provided a general solution to the problem of diastereose-
lectivity in the intermolecular [4+2+2] carbocyclization of 3-substituted
sulfonamide 1,6-enynes and 1,3-butadiene. Evans, P. A.; Fazal, A. N.;
Baum, E. W. Manuscript in preparation.
(13) Wender, P. A.; Williams, T. J. Angew. Chem., Int. Ed. 2002, 41, 4550.
(14) (a) Sieburth, S. M.; Fensterbank, L. J. Org. Chem. 1992, 57, 5279. (b)
Evans, P. A.; Cui, J.; Buffone, G. P. Angew. Chem., Int. Ed. 2003, 42,
1734.
Acknowledgment. We sincerely thank the National Science
Foundation (CHE-0316689) for generous financial support. We also
thank Johnson and Johnson for a Focused GiVing Award and Pfizer
JA046030+
9
J. AM. CHEM. SOC. VOL. 126, NO. 36, 2004 11151