D
D. N. Mai et al.
Letter
Synlett
(9) Peese, K. M.; Gin, D. Y. J. Am. Chem. Soc. 2006, 128, 8734.
(10) Please see the Supporting Information for details.
(11) Negishi, E.-I. Acc. Chem. Res. 1982, 15, 340.
(12) Wang, C.; Tobrman, T.; Xu, Z.; Negishi, E.-I. Org. Lett. 2009, 11,
4092.
Mn(OAc)3·2H2O (2.2 equiv)
Cu(OTf)2 (1.0 equiv), DMSO
80 °C, 36 h
H
O
O
(69%)
(13) Nicolaou, K. C.; Gray, D. L. F.; Montagnon, T.; Harrison, S. T.
Angew. Chem. Int. Ed. 2002, 41, 996.
(14) Suri, O. P.; Satti, N. K.; Sury, K. A.; Dhar, K. L.; Kachroo, P. L.;
Kawasaki, T.; Miyahara, K.; Tsunehiro, T.; Fumiko, Y. J. Nat. Prod.
1990, 53, 470.
34
35
Equation 1
We have examined two distinct approaches to the syn-
thesis of crotogoudin and crotobarin. The first pericyclic
cascade strategy was certainly undermined by the instabili-
ty of key intermediates, but computational studies suggest-
ed that poor selectivity for the desired pathway would also
have plagued this approach. A bioinspired approach led to
advanced tricyclic intermediates; unfortunately, the inabili-
ty to manipulate enone 27 prevented further forward prog-
ress toward these targets. In this study, we have shown the
strategic equivalence of dearomatizing oxidative heterocy-
clizations of phenols/dienone reduction and Birch reduc-
tion/halocyclization. Furthermore, we provide a rare exam-
ple of a manganese(III)-mediated keto-alkene cyclization
wherein the ketone is not further activated.28
(15) Lal, A.; Cambie, R. C.; Rutledge, P. S.; Woodgate, P. D. Phytochem-
istry 1990, 29, 1925.
(16) Aggarwal, V. K.; Ali, A.; Coogan, M. P. Tetrahedron 1999, 55, 293.
(17) Gansäuer, A.; Justicia, J.; Rosales, A.; Worgull, D.; Rinker, B.;
Cuerva, J. M.; Oltra, J. E. Eur. J. Org. Chem. 2006, 4115.
(18) Ushakov, D. B.; Raja, A.; Franke, R.; Sasse, F.; Maier, M. E. Synlett
2012, 23, 1358.
(19) Bauer, R. A.; Wenderski, T. A.; Tan, D. S. Nat. Chem. Bio. 2013, 9,
21.
(20) Baker, B. A.; Bošković, Z. V.; Lipshutz, B. H. Org. Lett. 2008, 10,
289.
(21) Boezio, A. A.; Pytkowicz, J.; Côté, A.; Charette, A. B. J. Am. Chem.
Soc. 2003, 125, 14260.
(22) (a) Nasipuri, D.; Chaudhuri, S. R. R. J. Chem. Soc., Perkin Trans. 1
1975, 262. (b) Zhao, J.-F.; Zhao, Y.-J.; Loh, T.-P. Chem. Commun.
2008, 1353.
(23) For a discussion of the difficulties of conjugate additions on this
type of scaffold, see: Cherney, E. C. PhD Thesis; The Scripps
Research Institute: La Jolla, CA, 2014, 95.
Funding Information
We thank the UC Cancer Research Coordinating Committee for fund-
ing initial phases of this research with grant CRC-15-380750 and the
(24) Snider, B. B. Chem. Rev. 1996, 96, 339.
(25) For one of the few examples of simple ketones functioning in
these reactions, see: O’Neil, S. V.; Quickley, C. A.; Snider, B. B.
J. Org. Chem. 1997, 62, 1970.
NSF for continued funding (CHE-1564340)
N
oaitn
a
l
Secince
F
o
u
n
d
oaitn
1(
5
6
4
3
4
0)
(26) Hosomi, A.; Sakurai, H. J. Am. Chem. Soc. 1977, 99, 1673.
(27) Sakurai, H.; Hosomi, A.; Hayashi, J. Org. Synth. 1984, 62, 86.
(28) Representative Experimental Procedure and Characteriza-
tion Data
Acknowledgment
We thank Hung Pham and Professor Ken Houk (UCLA) for assistance
with the computational evaluation of the cascade reaction in Scheme
1. Philipp Roosen is acknowledged for providing compound 34.
Compound 26: Phenol 19 (1.48 g, 5.39 mmol) was dissolved in
CF3CH2OH (50 mL) assisted by sonication. The open flask was
cooled to 0 °C. A solution of diacetoxyiodobenzene (1.82 g, 5.66
mmol) in CF3CH2OH (4 mL) was added dropwise. The reaction
mixture was stirred at 0 °C for 2 h, diluted with water (100 mL),
and extracted with CH2Cl2 (3 × 100 mL). The combined organic
extracts were dried with MgSO4, filtered, and concentrated in
vacuo. The resultant crude dark red oil was purified by column
chromatography (20% EtOAc in hexanes) to give 26 as a white
solid (0.96 g, 66% yield; mp 105–107 °C. 1H NMR (500 MHz,
CDCl3): δ = 6.86 (d, J = 10.2 Hz, 1 H), 6.33 (d, J = 10.2 Hz, 1 H),
6.16 (s, 1 H), 5.02 (s, 1 H), 4.82 (s, 1 H), 2.88–2.71 (m, 4 H), 2.42
(d, J = 13.3 Hz, 1 H), 2.02–1.83 (m, 4 H), 1.77 (s, 3 H), 0.89 (s, 3
H).13C NMR (125 MHz, CDCl3): δ = 184.8, 169.9, 156.7, 144.1,
143.6, 131.1, 126.2, 116.3, 82.8, 44.0, 41.1, 31.8, 28.6, 28.0, 26.0,
23.3, 17.5. IR (thin film): 3077, 3053, 2969, 2949, 1741, 1674,
1640, 1615 cm–1. ESI-HRMS (MeOH): m/z calcd for C17H20O3Na
[M + Na]+: 295.1310; found: 295.1311.
Compound 35: Mn(OAc)3·2H2O (0.316 g, 1.18 mmol) and
Cu(OTf)2 (0.195 g, 0.539 mmol) were added to a flame-dried
vial, degassed in triplicate (backfilling with argon), and sus-
pended in DMSO (5.4 mL). Ketone 34 (0.103 g, 0.533 mmol) was
added neat, via syringe, and the reaction mixture was heated to
80 °C in a preheated aluminum block for 36 h. The brown sus-
pension was cooled to r.t., diluted with water (2 mL), extracted
with CH2Cl2 and Et2O (2 × 2 mL). The combined organic extracts
Supporting Information
Supporting information for this article (Experimental procedures for
the synthesis of new compounds from Schemes 2, 3, and 4, and from
Equation 1, and their characterization data, are provided) is available
S
u
p
p
ortiInfogrmoaitn
S
u
p
p
ortioInfgrmoaitn
References and Notes
(1) Rakotonandrasana, O. L.; Raharinjato, F. H.; Rajaonarivelo, M.;
Dumontet, V.; Martin, M.-T.; Bignon, J.; Rasoanaivo, P. J. Nat.
Prod. 2010, 73, 1730.
(2) Gersch, M.; Kreuzer, J.; Sieber, S. A. Nat. Prod. Rep. 2012, 29, 659.
(3) Drahl, C.; Cravatt, B. F.; Sorensen, E. J. Angew. Chem. Int. Ed.
2005, 44, 5788.
(4) Breitler, S.; Carreira, E. M. Angew. Chem. Int. Ed. 2013, 52, 11168.
(5) Song, L.; Zhu, G.; Liu, Y.; Liu, B.; Qin, S. J. Am. Chem. Soc. 2015,
137, 13706.
(6) Ushakov, D. B.; Maier, M. E. Synlett 2013, 24, 705.
(7) Behera, T. K.; Singh, V. Tetrahedron 2014, 70, 7983.
(8) Guo, Y.; Liu, Q.; Jia, Y. Chem. Commun. 2015, 51, 889.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2017, 28, A–E