6458 Journal of Medicinal Chemistry, 2004, Vol. 47, No. 26
Letters
Meldal, M.; Salvesen, G. S. Internally quenched fluorescent
peptide substrates disclose the subsite preferences of human
caspases 1, 3, 6, 7 and 8. Biochem. J. 2000, 350, 563-568. (c)
Riedl, S. J.; Renatus, M.; Schwarzenbacher R.; Zhou, Q.; Sun,
C.; Fesik, S. W.; Liddington, R. C.; Salvesen, G. S. Structural
basis for the inhibition of caspase-3 by XIAP. Cell 2001, 104,
791-800.
Supporting Information Available: Experimental pro-
cedures, characterization of new compounds, and references
to known procedures. This material is available free of charge
References
(7) Rotonda, J.; Nicholson D. W.; Fazil K. M.; Gareau, Y.; Labelle,
M.; Peterson, E. P.; Rasper, D. M.; Ruel, R.; Vaillancourt, J. P.;
Thorneberry, N. A.; Becker, J. W. The three-dimensional struc-
ture of apopain/CPP32, a key mediator of apoptosis. Nat. Struct.
Biol. 1996, 3, 619-625.
(8) Wilson, K. P.; Black, J. F.; Thompson, J. A.; Kim, E. E.; Griffith,
J. P.; Navia, M. A.; Murcko, M. A.; Chambers, S. P.; Aldape, R.
A.; Raybuck, S. A.; Livingston, D. J. Structure and mechanism
of interleukin-1 beta converting enzyme. Nature 1994, 370, 270-
275.
(9) (a) Olson, G. L.; Bolin, D. R.; Bonner, M. P.; Bo¨s, M.; Cook, C.
M.; Fry, D. C.; Graves, B. J.; Hatada, M.; Hill, D. E.; Kahn, M.;
Madison, V. S.; Rusiecki, V. K.; Sarabu, R.; Sepinwall, J.;
Vincent, G. P.; Voss, M. E. Concepts and progress in the
development of peptide mimetics.J. Med. Chem. 1993, 36, 3039-
3049. (b) Fairlie, D. P.; Abbenante, G.; March, D. R. Macrocyclic
peptidomimetics - Forcing peptides into bioactive conforma-
tions. Curr. Med. Chem. 1995, 2, 654-686.
(10) Karanewsky, D. S.; Bai, X.; Linton, S. D.; Krebs, J. F.; Wu, J.;
Pham, B.; Tomaselli, K. J. Conformationally constrained inhibi-
tors of caspase-1 (interleukin-1â converting enzyme) and of the
human CED-3 homologue caspase-3 (CPP32, APOPAIN). Bioorg.
Med. Chem. Lett. 1998, 8, 2757-2762.
(11) (a) Golec, J. M. C.; Lauffer, D. J.; Livingston, D. J.; Mullican,
M. D.; Murcko, M. A.; Nyce, P. L.; Robidoux, A. L. C.; Wanna-
maker, M. W. Inhibitors of interleukin-1â converting enzyme.
Patent WO 9824805, 1998. (b) Amblard, M.; Daffix, I.; Berge´,
G.; Calme`s, M.; Dodey, P.; Pruneau, D.; Paquet, J.-L.; Luccarini,
J.-M.; Be´lichard, P.; Martinez, J. Synthesis and characterization
of bradykinin B2 receptor agonists containing constrained dipep-
tide mimics. J. Med. Chem. 1999, 42, 4193-4201.
(12) Bock, M. G.; Di Pardo, R. M.; Evans, B. E.; Rittle, K. E.; Veber,
D. F.; Freidinger, R. M.; An expedient synthesis of 3-amino-1,3-
dihydro-5-phenyl-2H-1,4-benzodiazepin-2-one. Tetrahedron Lett.
1987, 28, 939-942.
(13) Zoller, U.; Ben-Ishai, D.Amidoalkylation of mercaptans with
glyoxylic acid derivatives. Tetrahedron 1975, 31, 863-866.
(14) Sakaitani, M.; Ohfune, Y. Syntheses and reactions of silyl
carbamates. 1. Chemoselective transformation of amino protect-
ing groups via tert-butyldimethylsilyl carbamates. J. Org. Chem.
1990, 55, 870-876.
(15) Ewing, W. R.; Becker, M. R.; Manetta, V. E.; Davis, R. S.; Pauls,
H. W.; Mason, H.; Choi-Sledeski, Y. M.; Green, D.; Cha, D.;
Spada, A. P.; Cheney, D. L.; Mason, J. S.; Maignan, S.; Guillo-
teau, J.; Brown, K.; Colussi, D.; Bentley, R.; Bostwick, J.;
Kasiewski, C. J.; Morgan, S. R.; Leadley, R. J.; Dunwiddie, C.
T.; Perrone, M. H.; Chu, V. Design and structure-activity
relationships of potent and selective inhibitors of blood coagula-
tion factor Xa. J. Med. Chem. 1999, 42, 3557-3571.
(1) (a) Nicholson, D. W. From bench to clinic with apoptosis-based
therapeutic agents. Nature 2000, 407, 810-816. (b) Thornberry,
N. A.; Bull, H. G.; Calayeay, J. R.; Chapman, K. T.; Howard, A.
D.; Kostura, M. J.; Miller, D. K.; Molineaux, S. M.; Weidner, J.
R.; Aunins, J.; Elliston, K. O.; Ayala, J. M.; Casano, F. J.; Chin,
J.; Ding, G. J.-F.; Egger, L. A.; Gaffney, E. P.; Limijuco, G.;
Palyha, O. C.; Raju, S. M.; Rolando, A. M.; Salley, J. P.; Yamin,
T.-T.; Lee, T. D.; Shively, J. E.; MacCross, M.; Mumford, R. A.;
Schmidt, J. A.; Tocci, M. J. A novel heterodimeric cysteine
protease is required for interleukin-1 beta processing in mono-
cytes. Nature 1992, 356, 768-774. (c) Yuan, J.; Shaham, J.;
Ledoux, S.; Ellis, H. M.; Horvitz, H. R. The C. elegans cell death
gene ced-3 encodes a protein similar to mammalian interleukin-1
beta-converting enzyme. Cell 1993, 75, 641-652.
(2) (a) Thornberry, N. A.; Peterson, E. P.; Zhao, J. J.; Howard, A.
D.; Griffin, P. R.; Chapman, K. T. Inactivation of interleukin-1
beta converting enzyme by peptide (acyloxy)methyl ketones.
Biochemistry 1994, 33, 3934-3940. (b) Salvesen, G. S.; Dixit,
V. M. Caspases: intracellular signaling by proteolysis. Cell 1997,
91, 443-446. (c) Wolf, B. B.; Green, D. R. Suicidal tendencies:
apoptotic cell death by caspase family proteinases. J. Biol. Chem.
1999, 274, 20049-20052.
(3) (a) Thornberry, N. A.; Rano, T. A.; Peterson, E. P.; Rasper, D.
M.; Timkey, T.; Garcia-Calvo, M.; Houtzager, V. M.; Nordstrom,
P. A.; Roy, S.; Vaillancourt, J. P.; Chapman, K. T.; Nicholson,
D. W. A combinatorial approach defines specificities of members
of the caspase family and granzyme B. Functional relationships
established for key mediators of apoptosis. J. Biol. Chem. 1997,
272, 17907-17911. (b) Garcia-Calvo, M.; Peterson, E. P.; Rasper,
D. M.; Vaillancourt, J. P.; Zamboni, R.; Nicholson, D. W.;
Thornberry, N. A. Purification and catalytic properties of human
caspase family members. Cell Death Differ. 1999, 6, 362-369.
(c) Pistritto, G.; Jost, M.; Srinivasula, S. M.; Baffa, R.; Poyet,
J.-L.; Kari, C.; Lazebnik, Y.; Rodeck, U.; Alnemri, E. S. Expres-
sion and transcriptional regulation of caspase-14 in simple and
complex epithelia. Cell Death Differ. 2002, 9, 995-1006. (d)
Denault, J. B.; Salvesen, G. S. Caspases: keys in the ignition of
cell death. Chem. Rev. 2002, 102, 4489-4499. (e) O’Brien, T.;
Lee, D. Prospects for caspase inhibitors. Mini Rev. Med. Chem.
2004, 4, 153-165.
(4) (a) Smulson, M.; Istock, N.; Ding, R.; Chemey, B. Deletion
mutants of poly(ADP-ribose) polymerase support a model of
cyclic association and dissociation of enzyme from DNA ends
during DNA repair.Biochemistry 1994, 33, 6186-6194. (b) Meier,
P.; Finch, A.; Evan, G. Apoptosis in development. Nature 2000,
407, 796-801. (c) Thornberry, N. A.; Lazebnik, Y. Caspases:
enemies within. Science 1998, 281, 1312-1316. (d) Armstrong,
R. C.; Aia, T. J.; Hoang, K. D.; Gaur, S.; Bai, X.; Alnemri, E. S.;
Litwack, G.; Karanewsky, D. S.; Fritz, L. C.; Tomaselli, K.
Activation of the CED3/ICE-related protease CPP32 in cerebellar
granule neurons undergoing apoptosis but not necrosis. J.
Neurosci. 1997, 17, 553-562.
(5) Earnshaw, W. C.; Martins, L. M.; Kaufman, S. H. Mammalian
caspases: structure, activation, substrates, and functions during
apoptosis. Annu. Rev. Biochem. 1999, 68, 383-424.
(6) (a) Talanian, R. V.; Quinlan, C.; Trautz, S.; Hackett, M. C.;
Mankovic, J. A.; Banach, D.; Ghayur, T.; Brady, K. D.; Wong,
W. W. Substrate specificities of caspase family proteases.J. Biol.
Chem. 1997, 272, 9677-9682. (b) Stennicke, H. R.; Renatus, M.;
(16) Guibe, F.; Dangles, O.; Balavoine, G. Palladium-catalyzed reac-
tion of tributyltin hydride. Selective and very mild deprotection
of allyl and allyloxycarbonyl derivatives of amino acids. Tetra-
hedron Lett. 1986, 27, 2365-2368.
(17) Chapman, K. T. Synthesis of a potent, reversible inhibitor of
interleukin-1â converting enzyme. Bioorg. Med. Chem. Lett.
1992, 2, 613-618.
JM049248F