A R T I C L E S
Hwang et al.
Chart 1. Structures of D1-D3, D1H-D3H, T2H, and T2
ties, and functions.12 Inspired by the noncovalent nature of
natural photosynthetic systems, the self-assembly approach has
been increasingly attempted in the mimicry of light-harvesting
and charge separation systems.13 Among these, the coordination
interaction between zinc(II) porphyrin and pyridine is particu-
larly useful for its easy manipulation, relatively large association,
and a favorable tendency not to spoil the photo-excited-state
dynamics of porphyrins.14 Interesting examples so far reported
include oligomeric conjugated porphyrin ladders developed by
Anderson et al. that exhibit very large two-photon absorption
cross-section,15 energy-transfer and electron-transfer assemblies
reported by Hunter et al.,16 and giant porphyrin arrays and large
porphyrin wheels as a model of light-harvesting antenna reported
by Kobuke et al., where an imidazoyl substituent is used instead
of a pyridyl substituent.17 Spatial control of porphyrinic pigments
is crucial in supramolecular design of artificial photosynthetic
antennae, since it directly leads to control of the electronic
interactions between chromophores. In this respect, a precise
spatial control of porphyrin pigments with ample electronic
interactions still remains challenging. For use as light-harvesting
antennae, careful avoidance of energy sink that deactivates the
excited state is another important requirement.
Molecular self-assembly can translate the covalent connectiv-
ity and molecular shape of the components into tertiary structure.
In this context, the molecular component of a meso-meso-linked
diporphyrin18 is quite attractive because of its perpendicular
conformation, which may lead to unique architectures. In
addition, the two porphyrins in the component are strongly
coupled mainly with Coulombic interaction but not π-conjuga-
tion.18c This encourages the possibility that properly self-
assembled meso-meso-linked zinc(II) porphyrins serve as a
model for light-harvesting antennae.
Here we report self-assembly behaviors of meso-pyridine-
appended zinc(II) porphyrins M1-M3 and their meso-meso-
linked dimers D1-D3 (Chart 1). In noncoordinating solvents,
the monomeric porphyrins M1-M3 assemble into porphyrin
squares S1-S3, while the dimeric porphyrins D1-D3 self-
assemble into three-dimensional porphyrin boxes B1-B3 (Chart
2). Self-assembly formation of porphyrin squares has been
(12) (a) Lehn, J.-M. Science 2002, 295, 2400. (b) Hollingsworth, M. D. Science
2002, 295, 2410.
reported in other cases.19,20 Among these, we reported the first
X-ray crystal structure of S1.19 Formation of the porphyrin box
B1 is of interest in view of its large association constant. In
this study, we changed the size of the porphyrin box by inserting
one and two phenyl groups between the porphyrin and pyridyl
substituents. The three-dimensional zinc(II) porphyrin boxes
(13) (a) Hayashi, T.; Ogoshi, H. Chem. Soc. ReV. 1997, 26, 355. (b) Imamura,
T.; Fukushima, K. Coord. Chem. ReV. 2000, 198, 133. (c) Wojaczynski,
J.; Latos-Grazynski, L. Coord. Chem. ReV. 2000, 204, 113. (d) Chernook,
A. V.; Rempel, U.; van Borczyskowski, C.; Shulga, A. M.; Zenkevich, E.
I. Chem. Phys. Lett. 1996, 254, 229. (e) Flamigni, L.; Johnson, M. R. New
J. Chem. 2001, 25, 1368. (f) Hartnell, R. D.; Arnold, D. P. Organometallics
2004, 23, 391.
(14) (a) Hunter, C. A.; Sanders, J. K. M.; Beddard, G. S.; Evans, S. J. Chem.
Soc., Chem. Commun. 1989, 1765. (b) Anderson, S.; Anderson, H. L.;
Sanders, J. K. M. Acc. Chem. Res. 1993, 26, 469.
(15) (a) Wilson, G. S.; Anderson, H. L. Chem. Commun. 1999, 1539. (b) Taylor,
P. N.; Anderson, H. L. J. Am. Chem. Soc. 1999, 121, 11538. (c) Screen, T.
E.; Thorne, J. R. G.; Denning, R. G.; Bucknall, D. G.; Anderson, H. L. J.
Am. Chem. Soc. 2002, 124, 9712. (d) Screen, T. E.; Thorne, J. R. G.;
Denning, R. G.; Bucknall, D. G.; Anderson, H. L. J. Mater. Chem. 2003,
13, 2796.
(16) (a) Hunter, C. A.; Hyde, R. K. Angew. Chem., Int. Ed. Engl. 1996, 35,
1936. (b) Haycock, R. A.; Yartsev, A.; Michelsen, U.; Sundstro¨m, V.;
Hunter, C. A. Angew. Chem., Int. Ed. 2000, 39, 3616.
(17) (a) Ogawa, K.; Kobuke, Y. Angew. Chem., Int. Ed. 2000, 39, 4070. (b)
Ogawa, K.; Zhang, T.; Yoshihara, K.; Kobuke, Y. J. Am. Chem. Soc. 2002,
124, 22. (c) Takahashi, R.; Kobuke, Y. J. Am. Chem. Soc. 2003, 125, 2372.
(18) (a) Osuka, A.; Shimidzu, H. Angew. Chem., Int. Ed. Engl. 1997, 36, 135.
(b) Aratani, N.; Osuka, A.; Kim, Y. H.; Jeong, D. H.; Kim, D. Angew.
Chem., Int. Ed. 2000, 39, 1458. (c) Kim, Y. H.; Jeong, D. H.; Kim, D.;
Jeoung, S. C.; Cho, H. S.; Kim, S. K.; Aratani, N.; Osuka, A. J. Am. Chem.
Soc. 2001, 123, 76.
(19) For a preliminary report of this work, see: Tsuda, A.; Nakamura, T.;
Sakamoto, S.; Yamaguchi, K.; Osuka, A. Angew. Chem., Int. Ed. 2002,
41, 2817.
(20) (a) Fleischer, E. B.; Shachter, A. M. Inorg. Chem. 1991, 30, 3763. (b)
Drain, C. M.; Lehn, J.-M. J. Chem. Soc., Chem. Commun. 1994, 2313. (c)
Chi, X.; Guerin, A. J.; Haycock, R. A.; Hunter, C. A.; Sarson, L. D. J.
Chem. Soc., Chem. Commun. 1995, 2567. (d) Funatsu, K.; Kimura, A.;
Imamura, T.; Sasaki, Y. Chem. Lett. 1995, 765. (e) Fukushima, K.; Funatsu,
K.; Ichimura, A.; Sasaki, Y.; Suzuki, M.; Fujihara, T.; Tsuge, K.; Imamura,
T. Inorg. Chem. 2003, 42, 3187. (f) Stang, P. J.; Fan, J.; Olenyuk, B. Chem.
Commun. 1997, 1453. (g) Drain, C. M.; Nifiatis, F.; Vasenko, A.; Batteas,
J. Angew. Chem., Int. Ed. 1998, 37, 2344. (h) Merlau, M.; Mejia, M. de
P.; Nguyen, S. T.; Hupp, J. T. Angew. Chem., Int. Ed. 2001, 40, 4239. (i)
Mines, G. A.; Tzeng, B.-C.; Stevenson, K.; Li, J.; Hupp, J. T. Angew. Chem.,
Int. Ed. 2002, 41, 154. (j) Iengo, E.; Zangrando, E.; Minatel, R.; Alessio,
E. J. Am. Chem. Soc. 2002, 124, 1003. (k) Iengo, E.; Zangrando, E.; Alessio,
E. Eur. J. Inorg. Chem. 2003, 2371.
9
16188 J. AM. CHEM. SOC. VOL. 126, NO. 49, 2004