Journal of Inorganic and General Chemistry
ARTICLE
Zeitschrift für anorganische und allgemeine Chemie
Org. Biomol. Chem. 2007, 5, 31–44; g) M. Oestreich, The Mizo-
denser,
5 (100 mg 0.19 mmol) and grey selenium (60.0 mg,
roki-Heck Reaction, Wiley, Chichester, UK, 2009; h) N. Selander,
K. J. Szabo, Chem. Rev. 2011, 111, 2048–2076; i) A. Molnar,
Chem. Rev. 2011, 111, 2251–2320; j) M. Yus, I. M. Pastor, Chem.
Lett. 2013, 42, 94–108; k) M. N. Zafar, M. A. Mohsin, M. Danish,
M. F. Nazar, S. Murtaza, Russ. J. Coord. Chem. 2014, 40,781–
800.
0.77 mmol) were suspended in toluene (20 mL). The reaction mixture
was heated to reflux for 16 h. After cooling to room temperature, the
solvent was evaporated and the residue was suspended in dichloro-
methane (20 mL). To remove the excess of selenium, the suspension
was filtered over a pad of celite 500 (height: 1 cm; diameter: 2 cm).
The celite was washed with additional 50 mL dichloromethane and the
dichloromethane phases were united. The solvent was evaporated. The
residue was dissolved in dichloromethane (2 mL). Pure 7 was obtained
in 80% yield by liquid chromatography on silica (height: 25 cm; dia-
meter: 2 cm) with dichloromethane as eluent in form of a shiny yellow
crystalline solid. EA: C 63.74, H 5.12, N 12.93%; found: 63.74 H
5.23 N 12.66%. HR-MS (ESI) m/z: calcd. for C23H22N4Se: 434.1010
[2] W.-A. Herrmann, M. Elison, J. Fischer, C. Kocher, G. R. J. Artus,
Angew. Chem. Int. Ed. Engl. 1995, 34, 2371–2374.
[3] Some recent reviews concerning NHC-development: a) F. E.
Hahn, M. C. Jahnke, Angew. Chem. Int. Ed. 2008, 47, 3122–3172;
b) P. de Fremont, N. Marion, S. P. Nolan, Coord. Chem. Rev.
2009, 253, 862–892; c) M. Melaimi, M. Soleilhavoup, G. Ber-
trand, Angew. Chem. Int. Ed. 2010, 49, 8810–8849; d) T. Dröge,
F. Glorius, Angew. Chem. Int. Ed. 2010, 49, 6940–6952; e) L.
Benhamou, E. Chardon, G. Lavigne, S. Bellemin-Laponnaz, V.
Cesar, Chem. Rev. 2011, 111, 2705–2733; f) K. Riener, S. Ha-
slinger, A. Raba, M. P. Hogerl, M. Cokoja, W. A. Herrmann, F. E.
Kuhn, Chem. Rev. 2014, 114, 5215–5272; g) M. N. Hopkinson,
C. Richter, M. Schedler, F. Glorius, Nature 2014, 510, 485–496;
Y. Wang, G. H. Robinson, Inorg. Chem. 2014, 53, 11815–11832;
h) D. J. Nelson, Eur. J. Inorg. Chem. 2015, 2012–2027; i) E. Le-
vin, E. Ivry, C. E. Diesendruck, N. G. Lemcoff, Chem. Rev. 2015,
115, 4607–4692.
1
[M]+; found: 435.1074 [M + H]+. H NMR (300 MHz, CDCl3): δ =
7.10 (s, 4 H), 2.39 (s, 6 H), 2.17 (s, 12 H). 13C NMR (75 MHz,
CDCl3): δ = 165.3, 141.7, 135.3, 130.6, 130.2, 113.7, 106.3, 21.4, 17.9.
77Se NMR (75 MHz, CDCl3): δ = 166.6. FT-IR (KBr): ν˜ = 3036,
2984, 2944, 2916, 2857, 2235 (CN), 1744, 1606, 1481, 1456, 1376,
1320, 1289, 1210, 1189, 1078, 1034, 1012, 894, 861, 773, 705, 561,
552, 490 cm–1.
Representative Procedure for the Mizoroki-Heck Reaction: In a
2 mL Schlenk tube with a magnetic stirrer, sodium carbonate (18.7 mg;
176 μmol; 1.4 equiv.) and TBAB (4.1 mg; 12.6 μmol; 0.1 equiv.) were
submitted. A solution of the precatalyst (126 nmol; 0.001 equiv.) and
1,3,5-trimethoxybenzene (2.11 mg; 12.6 μmol; 0.1 equiv.) in 0.5 mL
N,N-dimethylformamide was added. The mixture was stirred at room
temperature for 5 min. Afterwards, bromobenzene (19.8 mg; 13.2 μL;
126 μmol) and n-butyl acrylate (32.3 mg; 35.9 μL; 252 μmol;
2.0 equiv.) were added via syringe and the tube was sealed and secured
three times by evacuating and subsequently flushing with argon. The
flask was placed in a preheated oil bath at 140 °C and stirred for 16
h. After finishing the reaction, the flask was cooled to 0 °C in an ice
bath immediately. The cold mixture was hydrolyzed with hydrochloric
acid (2 mL 1 n) and chloroform (2 mL) was added subsequently. The
mixture was poured into 20 mL water and the aqueous phase was ex-
tracted three times with 2 mL chloroform.
[4] D. J. Nelson, S. P. Nolan, Chem. Soc. Rev. 2013, 42, 6723–6753.
[5] C. J. OЈBrien, E. A. B. Kantchev, C. Valente, N. Hadei, G. A.
Chass, A. Lough, A. C. Hopkinson, M. G. Organ, Chem. Eur. J.
2006, 12, 4743–4748.
[6] a) J. Nasielski, N. Hadei, G. Achonduh, E. A. B. Kantchev, C. J.
OЈBrien, A. Lough, M. G. Organ, Chem. Eur. J. 2010, 16, 10844–
10853; b) M.-T. Chen, D. A. Vicic, M. L. Turner, O. Navarro,
Organometallics 2011, 30, 5052–5056; c) M.-T. Chen, D. A.
Vicic, W. J. Chain, M. L. Turner, O. Navarro, Organometallics
2011, 30, 6770–6773; d) C. W. D. Gallop, C. Zinser, D. Guest, O.
Navarro, Synlett 2014, 25, 2225–2228; e) D. Guest, M.-T. Chen,
G. J. Tizzard, S. J. Coles, M. L. Turner, O. Navarro, Eur. J. Inorg.
Chem. 2014, 2200–2203; f) D. Guest, V. H. M. da Silva, A. P.
de Lima Batista, S. M. Roe, A. A. C. Braga, O. Navarro, Organo-
metallics 2015, 34, 2463–2470.
[7] H. Baier, P. Metzner, T. Körzdörfer, A. Kelling, H.-J. Holdt, Eur.
J. Inorg. Chem. 2014, 2952–2960.
[8] H. Baier, A. Kelling, H.-J. Holdt, Eur. J. Inorg. Chem. 2015,
1950–1958.
For the substrate screening, the crude product was dissolved in 1.5 mL
chloroform (GC grade from MERCK) and the yield was determined
using a Perkin-Elmer Clarus 580, equipped with a Perkin-Elmer Elite
5 MS column (length: 30 m, diameter: 0.25 mm). Signals were de-
tected by an FID-detector. The method of internal standard was used
to determine GC yields.
[9] a) C. A. Tolman, J. Am. Chem. Soc. 1970, 92, 2953–2956; b)
C. A. Tolman, Chem. Rev. 1977, 77, 313–348; c) R. A. Kelly,
H. Clavier, S. Guidice, N. M. Scott, E. D. Stevens, J. Bordner, I.
Samardjiev, C. D. Hoff, L. Cavallo, S. P. Nolan, Organometallics
2008, 27, 202–210; d) A. R. Chianese, X. Li, M. C. Janzen, J. W.
Faller, R. H. Crabtree, Organometallics 2003, 22, 1663; e) S.
Wolf, H. Plenio, J. Organomet. Chem. 2009, 694, 1487–1492.
[10] A. Liske, K. Verlinden, H. Buhl, K. Schaper, C. Ganter, Organo-
metallics 2013, 32, 5269–5272.
[11] D. J. Nelson, F. Nahra, S. R. Patrick, D. B. Cordes, A. M. Z. Sla-
win, S. P. Nolan, Organometallics 2014, 33, 3640–3645.
[12] S. V. C. Vummaleti, D. J. Nelson, A. Poater, A. Gomez-Suarez,
D. B. Cordes, A. M. Z. Slawin, S. P. Nolan, L. Cavallo, Chem.
Sci. 2015, 6, 1895–1904.
For the calibration of the GC setup, the coupling products were iso-
lated once by flash chromatography on silica (height: 460 mm, dia-
meter: 15 mm) with hexane-ethyl acetate mixtures as eluent and char-
1
acterized by means of H and 13C NMR spectroscopy and mass spec-
trometry. The analytical data of already known products were in agree-
ment with the data already presented in the literature.[7,20]
Supporting Information (see footnote on the first page of this article):
1H-NMR spectra of the new compounds 4, 6 and 7 and the 77Se-NMR
spectrum of selone 7 are provided in the supporting information.
[13] E. C. Keske, O. V. Zenkina, R. Wang, C. M. Crudden, Organome-
tallics 2012, 31, 6215–6221.
[14] W. L. F. Armarego, C. L. L. Chai, Purification of Laboratory
Chemicals, 6th ed., Elsevier, 2009.
[15] M. S. Karasch, R. C. Seyler, F. R. Mayo, J. Am. Chem. Soc. 1938,
60, 882–884.
References
[16] L. Hintermann, Beilstein J. Org. Chem. 2007, 3, 22.
[17] H. Baier, A. Kelling, R. Jackstell, H.-J. Holdt, Z. Anorg. Allg.
Chem. 2013, 639, 1731–1739.
[18] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A.
Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, Organome-
tallics 2010, 29, 2176–2179.
[1] a) R. F. Heck, J. P. Nolley Jr., J. Org. Chem. 1972, 37, 2320–
2322; b) T. Mizoroki, K. Mori, A. Ozaki, Bull. Chem. Soc. Jpn.
1971, 44, 581; c) G. T. Crisp, Chem. Soc. Rev. 1998, 27, 427–
436; d) I. P. Beletskaya, A. V. Cheprakov, Chem. Rev. 2000, 100,
3009–3066; e) N. T. S. Phan, M. Van Der Sluys, C. W. Jones, Adv.
Synth. Catal. 2006, 348, 609–679; f) J. P. Knowles, A. Whiting,
Z. Anorg. Allg. Chem. 2016, 140–147
146
© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim