C O M M U N I C A T I O N S
Scheme 4 a
efficient alkyl-alkenyl cross coupling17 of segments 21 and 10.
Specifically, alkyl iodide 10 was treated with t-BuLi at -78 °C
followed by addition of excess 9-MeO-9-BBN to give the corre-
sponding borate 22, which transfers its functionalized alkyl group
to the organopalladium species derived from alkenyl iodide 21 and
(dppf)PdCl2/AsPh3, thus delivering product 23 in 74% isolated yield.
Selective cleavage of the methyl ester in diester 23 with LiI in
pyridine18 followed by successive removal of the remaining acetal
moiety and the PMB ether gave seco-acid 25. The final macro-
cyclization of this compound proceeded smoothly under Yamaguchi
conditions,19,20 affording amphidinolide X 1 in 62% yield, thereby
completing the first total synthesis of this bioactive marine natural
product. Its analytical data are in excellent agreement with those
reported in the literature.2
Acknowledgment. Generous support by the DFG (Leibniz
award), the Fonds der Chemischen Industrie, the Merck Research
Council, and the Deutsch-Israelische Projektkooperation (DIP) is
gratefully acknowledged. O.L. thanks the AvH Foundation and
FQRNT for a fellowship.
a Conditions: [a] Et2Zn, Pd(OAc)2 cat., PPh3 cat., THF, 65% (anti:syn
) 4.5:1); [b] PMBCl, NaH, TBAI, DMF, 94%; [c] LiHMDS, MeI, THF,
95%; [d] (i) Cp2ZrHCl, C6H6; (ii) I2, CH2Cl2, 61%; [e] DDQ, CH2Cl2, pH
7 buffer, 89%; [f] (EtO)2P(O)CH2COOMe, LiCl, DBU, MeCN, 94%; [g]
HF‚pyridine, MeCN, quant.; [h] (i) oxalyl chloride, DMSO, Et3N, CH2Cl2;
(ii) NaClO2, NaH2PO4, (CH3)2CdCHCH3, tBuOH, 92%.
Supporting Information Available: Experimental details and
characterization of all new compounds. This material is available free
References
Scheme 5 a
(1) (a) Chakraborty, T. K.; Das, S. Curr. Med. Chem.: Anti-Cancer Agents
2001, 1, 131. (b) Kobayashi, J.; Tsuda, M. Nat. Prod. Rep. 2004, 21, 77.
(2) Tsuda, M.; Izui, N.; Shimbo, K.; Sato, M.; Fukushi, E.; Kawabata, J.;
Katsumata, K.; Horiguchi, T.; Kobayashi, J. J. Org. Chem. 2003, 68, 5339.
(3) Total synthesis of other amphidinolides: (a) A¨ıssa, C.; Riveiros, R.; Ragot,
J.; Fu¨rstner, A. J. Am. Chem. Soc. 2003, 125, 15512. (b) Fu¨rstner, A.;
A¨ıssa, C.; Riveiros, R.; Ragot, J. Angew. Chem., Int. Ed. 2002, 41, 4763.
(4) Other total syntheses: (a) Williams, D. R.; Kissel, W. S. J. Am. Chem.
Soc. 1998, 120, 11198. (b) Williams, D. R.; Myers, B. J.; Mi, L. Org.
Lett. 2000, 2, 945. (c) Williams, D. R.; Meyer, K. G. J. Am. Chem. Soc.
2001, 123, 765. (d) Lam, H. W.; Pattenden, G. Angew. Chem., Int. Ed.
2002, 41, 508. (e) Maleczka, R. E.; Terrell, L. R.; Geng, F.; Ward, J. S.
Org. Lett. 2002, 4, 2841. (f) Ghosh, A. K.; Liu, C. J. Am. Chem. Soc.
2003, 125, 2374. (g) Trost, B. M.; Harrington, P. E. J. Am. Chem. Soc.
2004, 126, 5028. (h) Ghosh, A. K.; Gong, G. J. Am. Chem. Soc. 2004,
126, 3704. (i) Colby, E. A.; O’Brien, K. C.; Jamison, T. F. J. Am. Chem.
Soc. 2004, 126, 998. (j) Trost, B. M.; Papillon, J. P. N. J. Am. Chem.
Soc. 2004, 126, 13618. (k) Trost, B. M.; Chisholm, J.; Wrobleski, S.;
Jung, M. J. Am. Chem. Soc. 2002, 124, 12420.
(5) (a) Fu¨rstner, A.; Me´ndez, M. Angew. Chem., Int. Ed. 2003, 42, 5355. (b)
See also: Fu¨rstner, A.; Leitner, A.; Me´ndez, M.; Krause, H. J. Am. Chem.
Soc. 2002, 124, 13856.
(6) Narco, K.; Baltas, M.; Gorrichon, L. Tetrahedron 1999, 55, 14013.
(7) Johnson, R. A.; Sharpless, K. B. In Catalytic Asymmetric Synthesis, 2nd
ed.; Ojima, I., Ed.; Wiley-VCH: New York, 2000; p 231.
(8) Mu¨ller, S.; Liepold, B.; Roth, G. J.; Bestmann, H. J. Synlett 1996, 521.
(9) Marshall, J.; Pinney, K. G. J. Org. Chem. 1993, 58, 7180.
(10) Crotti, P.; Di Bussolo, V.; Favero, L.; Macchia, F.; Pineschi, M. Eur. J.
Org. Chem. 1998, 1675.
(11) Chatgilialoglu, C. Acc. Chem. Res. 1992, 25, 188.
a Conditions: [a] 2,4,6-trichlorobenzoyl chloride, Et3N, toluene; then 17,
DMAP, 96%; [b] tBuLi, Et2O/THF; then 9-MeO-9-BBN; [c] (dppf)PdCl2,
Ph3As, K3PO4, aqueous DMF, 74%; [d] LiI, pyridine, 125 °C; [e] aqueous
HOAc, 53% (over both steps); [f] DDQ, CH2Cl2, pH 7 buffer, 84%; [g]
2,4,6-trichlorobenzoyl chloride, Et3N, THF; then DMAP, toluene, 62%.
(12) (a) Marshall, J. A. Chem. ReV. 2000, 100, 3163. (b) Marshall, J. A.; Adams,
N. D. J. Org. Chem. 1999, 64, 5201.
(13) Hu, T.; Panek, J. S. J. Am. Chem. Soc. 2002, 124, 11368.
(14) Bode, J. W.; Carreira, E. M. J. Org. Chem. 2001, 66, 6410.
(15) (a) Fu¨rstner, A.; Seidel, G. Tetrahedron 1995, 51, 11165. (b) Fu¨rstner,
A.; Nikolakis, K. Liebigs Ann. 1996, 2107. (c) See also: Soderquist, J.
A.; Matos, K.; Rane, A.; Ramos, J. Tetrahedron Lett. 1995, 36, 2401.
(16) Marshall, J. A.; Johns, B. A. J. Org. Chem. 1998, 63, 7885.
(17) Review: Chemler, S. R.; Trauner, D.; Danishefsky, S. J. Angew. Chem.,
Int. Ed. 2001, 40, 4544.
O-PMB group with DDQ preceded a Yamaguchi esterification of
alcohol 17 with acid 20, which was derived from the known
aldehyde 18 (ee ) 95%)14 as shown in Scheme 4.
With the required building blocks in hand, the stage was set for
the crucial segment couplings (Scheme 5). Previous work from this
laboratory had shown that Suzuki reactions can be conveniently
performed with borate complexes derived from 9-MeO-9-BBN and
a suitable organolithium reagent;15 the latter can also be formed in
situ.16 Application of this method to the present case resulted in
(18) Hunter, T. J.; O’Doherty, G. A. Org. Lett. 2002, 4, 4447.
(19) (a) Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull.
Chem. Soc. Jpn. 1979, 52, 1989. (b) Hikota, M.; Sakurai, Y.; Horita, K.;
Yonemitsu, O. Tetrahedron Lett. 1990, 31, 6367. (c) Recent application:
Mlynarski, J.; Ruiz-Caro, J.; Fu¨rstner, A. Chem.-Eur. J. 2004, 10, 2214.
(20) Other macrodiolide syntheses: (a) Fu¨rstner, A.; Albert, M.; Mlynarski,
J.; Matheu, M.; DeClercq, E. J. Am. Chem. Soc. 2003, 125, 13132. (b)
Fu¨rstner, A.; Thiel, O. R.; Ackermann, L. Org. Lett. 2001, 3, 449.
JA044130+
9
J. AM. CHEM. SOC. VOL. 126, NO. 49, 2004 15971