Communication
Organic & Biomolecular Chemistry
Acknowledgements
We thank the Science and Engineering Research Board, DST
No: EMR/2015/001103/OC and the Ramanujan Fellowship SB/
S2/RJN-059/2015 for financial support. RP and VB acknowledge
the IISER-Trivandrum for fellowship. RC acknowledges the
CSIR for fellowship.
Scheme 6 Disproportionation of phenylsilane.
Notes and references
1 (a) W.-L. Dong, W.-X. Cai, R. Wu, Z.-M. Li, W.-G. Zhao and
X.-H. Liu, Phosphorus, Sulfur Silicon Relat. Elem., 2016, 191,
980; (b) F. Alonso, I. P. Beletskaya and M. Yus, Chem. Rev.,
2002, 102, 4009.
2 (a) R. C. Samanta and H. Yamamoto, J. Am. Chem. Soc.,
2017, 139, 1460; (b) Y. Kawato, A. Kubota, H. Ono, H. Egami
and Y. Hamashima, Org. Lett., 2015, 17, 1244; (c) W. Xie,
G. Jiang, H. Liu, J. Hu, X. Pan, H. Zhang, X. Wan, Y. Lai and
D. Ma, Angew. Chem., Int. Ed., 2013, 52, 12924.
Scheme 7 Mechanistic hypothesis.
3 M. C. Haibach, B. M. Stoltz and R. H. Grubbs, Angew.
Chem., Int. Ed., 2017, 56, 15123.
DMF), the reaction was sluggish and produced a mixture of
cyclized 10a and uncyclized 10b products (based on crude
NMR and GC-MS); further efforts to improve the selective for-
mation of the cyclized product in CH3CN were not successful.
Similarly, an un-cyclized product was observed with substrate
11 and a carbonyl trap experiment also led to the uncyclized
product.10d These experiments clearly demonstrate a non-
radical mechanistic pathway under the established conditions.
The exposure of phenylsilane to NaOMe in THF resulted in
the formation of diphenylsilane 12 via disproportionation
(Scheme 6).19 The isolated diphenylsilane 12 was subjected to
protodehalogenation that offered 2a in 93% yield. Based on
our observation, a mechanistic hypothesis is represented in
Scheme 7. A rapid disproportionation of phenylsilane leads to
the formation of diphenylsilane that reduces FeCl3 (in the
presence of NaOMe) to HFeLn; subsequent oxidative addition
of halides followed by reductive elimination could lead to the
protodehalogenated product. Additional investigation is
necessary to completely elucidate the mechanism.
4 E. J. Enholm and J. P. Schulte, Org. Lett., 1999, 1, 1275.
5 (a) I. Ghosh, T. Ghosh, J. I. Bardagi and B. König, Science,
2014, 346, 725; (b) J. D. Nguyen, E. M. D’Amato,
J. M. Narayanam and C. R. Stephenson, Nat. Chem., 2012,
4, 854; (c) T. Maji, A. Karmakar and O. Reiser, J. Org. Chem.,
2011, 76, 736; (d) J. M. R. Narayanam, J. W. Tucker and
C. R. J. Stephenson, J. Am. Chem. Soc., 2009, 131, 8756;
(e) Q. Liu, B. Han, W. Zhang, L. Yang, Z.-L. Liu and W. Yu,
Synlett, 2005, 2248; (f) J. T. Petroff II, A. H. Nguyen,
A. J. Porter, F. D. Morales, M. P. Kennedy, D. Weinstein,
H. E. Nazer and R. D. McCulla, J. Photochem. Photobiol., A,
2017, 335, 149; (g) X. Li, Z. Hao, F. Zhang and H. Li, ACS
Appl. Mater. Interfaces, 2016, 8, 12141.
6 K. Inoue, A. Sawada, I. Shibata and A. Baba, J. Am. Chem.
Soc., 2002, 124, 906.
7 A. Ekomié, G. Lefèvre, L. Fensterbank, E. Lacôte,
M. Malacria, C. Ollivier and A. Jutand, Angew. Chem., Int.
Ed., 2012, 51, 6942.
8 J. Yang and M. Brookhart, J. Am. Chem. Soc., 2007, 129, 12656.
9 N. Hayashi, I. Shibata and A. Baba, Org. Lett., 2004, 6, 4981;
M. Aizenberg and D. Milstein, J. Am. Chem. Soc., 1995, 117,
8674.
Conclusions
In summary, we have demonstrated a simple catalytic system
based on FeCl3 that can efficiently reduce both the alkyl and
aryl halides. The loading of FeCl3 can be reduced to as low as
0.5 mol%. The moderate yield obtained for aryl halides can be
attributed to the formation of silylated side products; further-
more, mechanistic studies revealed that the reaction does not
proceed through a radical intermediate.
10 (a) S. H. Kyne, M. Clémancey, G. Blondin, E. Derat,
L. Fensterbank, A. Jutand, G. Lefèvre and C. Ollivier,
Organometallics, 2018, 37, 761; (b) S. H. Kyne, C. Lévêque,
S. Zheng, L. Fensterbank, A. Jutand and C. Ollivier,
Tetrahedron, 2016, 72, 7727; (c) J. L. Kuo, C. Lorenc,
J. M. Abuyuan and J. R. Norton, J. Am. Chem. Soc., 2018, 140,
4512; (d) R. A. Batey and D. Bruce MacKay, Tetrahedron Lett.,
1998, 39, 7267; (e) R. Oozeerally, D. L. Burnett,
T. W. Chamberlain, R. I. Walton and V. Degirmenci,
ChemCatChem, 2018, 10, 706; (f) J. Vela, J. M. Smith, Y. Yu,
N. A. Ketterer, C. J. Flaschenriem, R. J. Lachicotte and
P. L. Holland, J. Am. Chem. Soc., 2005, 127, 7857; (g) H. Guo,
Conflicts of interest
There are no conflicts to declare.
Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2018