D. L. Flanigan et al. / Tetrahedron Letters 46 (2005) 143–146
145
O
References and notes
R
NH
2
HN
N
a, b, c
NMe
NMe
1. (a) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern
Catalytic Methods for Organic Synthesis with Diazo
Compounds; Wiley-Interscience: New York, 1998; (b)
Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003,
103, 861, See also references cited therein.
N
CO H
2
2
O
Ph
Ph
O
Ph
1
20
21 (R = PhSO )
2
22 (R = MeO C)
2
23 (R = MeCO)
2. (a) Taber, D. F.; Ruckle, R. E., Jr. J. Am. Chem. Soc.
1986, 108, 7686; (b) Doyle, M. P.; Westrum, L. J.;
Wolthuis, W. N. E.; See, M. M.; Boone, W. P.; Bageri, V.;
Pearson, M. M. J. Am. Chem. Soc. 1993, 115, 958; (c)
Taber, D. F.; You, K. K.; Rheingold, A. L. J. Am. Chem.
Soc. 1996, 118, 547; (d) Taber, D. F.; Malcolm, S. C. J.
Org. Chem. 1998, 63, 3717.
Scheme 6. Reagents: (a) SOCl2, MeOH; (b) MeNH2, MeOH; (c)
acetone, DMF.
O
O
R
3. For the synthesis of lactams by intramolecular C–H
insertion, see: (a) Doyle, M. P.; Shanklin, M. S.; Pho, H.
Q. Tetrahedron Lett. 1988, 29, 2639; (b) Doyle, M. P.;
Taunton, J.; Pho, H. Q. Tetrahedron Lett. 1989, 30, 5397;
(c) Doyle, M. P.; Pieters, R. J.; Taunton, J.; Pho, H. Q. J.
Org. Chem. 1991, 56, 820; (d) Wee, A. G. H.; Liu, B.;
Zhang, L. J. Org. Chem. 1992, 57, 4404; (e) Padwa, A. P.;
Austin, D. J.; Price, A. T.; Semones, M. A.; Doyle, M. P.;
Protopopova, M. N.; Winchester, W. R.; Tran, A. J. Am.
Chem. Soc. 1993, 115, 8669; (f) Wee, A. G. H.; Slobodian,
J. J. Org. Chem. 1996, 61, 2897; (g) Doyle, M. P.; Kalinin,
A. V. Tetrahedron Lett. 1996, 37, 1371; (h) Hashimoto,
S.-I.; Anada, M. Tetrahedron Lett. 1998, 39, 79; (i) Wee,
A. G. H.; Liu, B.; McLeod, D. D. J. Org. Chem. 1998, 63,
4218; (j) Moody, C. J.; Miah, S.; Slawin, A. M. Z.;
Mansfield, D. J.; Richards, I. C. Tetrahedron 1998, 54,
9689; (k) Gois, P. M. P.; Afonso, C. A. M. Eur. J. Org.
Chem. 2003, 3798.
4. (a) Padwa, A.; Austin, D. J. Angew. Chem., Int. Ed. Engl.
1994, 33, 1797; (b) Gois, P. M. P.; Afonso, A. M. Eur. J.
Org. Chem. 2004, 3773.
5. (a) Yoon, C. H.; Zaworotko, M. J.; Moulton, B.; Jung, K.
W. Org. Lett. 2001, 3, 3539; (b) Yoon, C. H.; Nagle, A.;
Chen, C.; Gandhi, D.; Jung, K. W. Org. Lett. 2003, 5,
2259.
6. Davies, H. M. L.; Panaro, S. A. Tetrahedron 2000, 56,
4871.
7. Yoon, C. H.; Flanigan, D. L.; Chong, B.-D.; Jung, K. W.
J. Org. Chem. 2002, 67, 6582.
N
H
Rh (OAc)
2
N
4
NMe
R
NMe
N
2
benzene
reflux
Ph
O
O
Ph
product
24
reactant
21 (R = PhSO )
yield
93%
97%
2
22 (R = MeO C)
25
2
23 (R = MeCO)
99%
26
Scheme 7.
This substrate could then be converted to 21, 22, and 23
by following the same procedures shown in Scheme 3.
To our satisfaction, intramolecular C–H insertion of 21,
22, and 23 occurred readily under refluxing benzene con-
ditions and produced the corresponding c-lactams 24,
25, and 26 with improved yields and excellent stereose-
lectivity (Scheme 7). We attribute this improvement in
yield to the increased rigidity of the N,N-acetonide. In
this case, the diazo-intermediates possess an sp2 center
at the carbonyl as opposed to the sp3 center present in
the N,O-acetonide system. The conformation of the
Rh-carbenoid is likely more restricted resulting in great-
er efficiency of the C–H insertion.
We have described an efficient and versatile method of
synthesizing chiral c-lactams from a-diazoamides con-
taining various a-substituents via a rigid bicyclic transi-
tion state. The Ôconformational lockÕ exerted by the
gem-dimethyl moiety affords the high regio- and stereo-
selectivities. This methodology can be applied to chiral
natural and unnatural a-amino acids with various a-
substituents to yield highly functionalized heterocycles,
which can be tailor made for use in any application.
8. For the C–H insertion of a-diazoamides derived from a-
amino acids, see: (a) Zaragoza, F.; Zahn, G. J. Prakt.
Chem. 1995, 292; (b) Ref. 3g; (c) Anada, M.; Sugimoto, T.;
Watanabe, N.; Nakajima, M.; Hashimoto, S.-I. Hetero-
cycles 1999, 50, 969.
9. (a) For a conformational study of N-acyloxazolidines, see:
Porter, N. A.; Bruhnke, J. D.; Wu, W.-X.; Rosenstein, I.
J.; Beryer, R. A. J. Am. Chem. Soc. 1991, 113, 7788; (b)
Kanemasa, S.; Onimura, K. Tetrahedron 1992, 48, 8631.
10. The structure of 7 was confirmed by X-ray crystallo-
graphic analysis; see Ref. 5a.
11. Hashimoto reported that C–H insertion of a-diazo-a-
acetoacetamide I, the analog of 5 and 13, afforded a trans-
c-lactam II in 84% yield. see Ref. 8c.
Acknowledgements
The authors acknowledge generous financial support
from the National Institutes of Health (RO1 GM
62767). We also thank Dr. M. J. Zaworotko for X-ray
analysis.
O
O
O
O
N
H
Rh (OAc)
2
4
O
N
O
CH Cl
2
2
N
2
84%
I
II
Supplementary data
Supplementary data associated with this article can be
12. General procedure for C–H insertion reactions:
Rh2(OAc)4 (11mg, 2.5mol%) was added to a solution of
an diazoamide compound (1mmol) in dry CH2Cl2 (20mL,