Dioxygen Activation at a Single Copper Site
A R T I C L E S
oxidases (AOs) and galactose oxidase (GAO),12-14 as well as
in the self-processing biogenesis of their respective cofactors
(topaquinone and S-Cys-modified tyrosine).15 However, direct
structural or spectroscopic information is not available for any
such species in AO or GAO, with the exception of X-ray
structural evidence for product H2O2 near the Cu site in
Escherichia coli AO.16
has been defined, wherein for S ) THF, faster reactions and
accentuated supporting ligand electronic influences are observed
relative to those when S ) RCN.27,28 Activation parameters for
these and other related systems22b have been interpreted to
indicate dissociative or associative processes for the oxygenation
process, depending on the nature of S or the supporting ligand
L. Notwithstanding these advances, there is a general lack of
knowledge of the elementary reaction steps involved in the
displacement of S from Cu(I) by O2 and of the structure(s) of
the key transition state(s) and/or intermediates involved in
oxygenations that yield well-defined 1:1 Cu-O2 adducts.
Significant insights into dioxygen activation by copper
proteins have been obtained through synthetic modeling studies,
with peroxo- and bis(µ-oxo)dicopper complexes having been
especially thoroughly examined.17 Detailed understanding of
monocopper-dioxygen species is less developed, in part because
in reactions of Cu(I) complexes with O2, 1:1 Cu-O2 intermedi-
ates are often no more than transient species that are rapidly
trapped by a second Cu(I) ion to yield relatively stable dicopper
complexes.4,17b Thus, only a few examples of isolable and well-
defined synthetic monocopper-dioxygen species have been
reported (Table S1 in the Supporting Information). A side-on
(η2) Cu-O2 complex supported by a hindered tris(pyrazolyl)-
hydroborate (Tp) ligand has been characterized by X-ray
crystallography18 and identified (along with an analog) as a
Cu(II)-O2- species on the basis of spectroscopy and theory.19
An end-on (η1) complex has been identified by FTIR spec-
troscopy and shown to evolve H2O2 upon protonation.20 Ki-
netic, UV-vis, and resonance Raman evidence for a stable
In recent explorations of the O2 chemistry of Cu(I) complexes
of â-diketiminate ligands, we found that bis(µ-oxo)dicopper
complex formation29 could be inhibited by using the sterically
hindered ligands L1 and L2.30,31 Oxygenation of LCu(MeCN)
(L ) L1 or L2) at low temperature yielded stable η2 1:1 Cu-O2
adducts that were characterized by NMR, UV-vis, EPR, and
resonance Raman spectroscopy, DFT calculations, and a pre-
liminary X-ray crystal structure for L ) L2 (Table S1 in the
Supporting Information). Notably, low values for the O-O
stretching frequency (e.g., for L ) L2, ν(16O2) ) 961 cm-1 and
∆ν(18O2) ) 49 cm-1) suggested significant contribution of a
Cu(III)-O22- resonance form. This conclusion was corroborated
by the relatively long O-O distance calculated (1.376 Å) and
observed by crystallography (1.44 Å),31,32 although the reliability
of the latter was mitigated by the relatively poor quality of the
X-ray structural data coupled with extreme disorder of the
molecule in the crystal.
-
Cu(II)-O2 complex of a tetradentate N3O donor ligand also
have been presented;21 similar data have appeared for ana-
logous yet less thermodynamically stable examples.22 Finally,
Cu(II)-OOR (R ) acyl, alkyl, or H) complexes have been
isolated that are relevant in the current context, although they
are not obtained from reactions of Cu(I) complexes with O2.4,23
Extensive kinetics studies of the oxygenation of Cu(I) com-
plexes have provided some benchmark activation and thermo-
dynamic parameters for 1:1 adduct formation, although the level
of mechanistic detail available is limited.17b,24-26 Recently, the
importance of the solvent ligand (S) in (TMPA)Cu(I) complexes
(TMPA ) tris(pyridylmethyl)amine) on the rate of oxygenation
Herein, we report revised X-ray crystallographic results for
L2CuO2 based on a better quality data set acquired using a
synchrotron radiation source. Further insight into the geometry
(12) Halcrow, M.; Phillips, S.; Knowles, P. In Subcellular Biochemistry, Vol.
35: Enzyme-Catalyzed Electron and Radical Transfer; Holzenburg, A.,
Scrutton, N. S., Eds.; Plenum: New York, 2000; pp 183-231.
(13) Klinman, J. P. J. Biol. Inorg. Chem. 2001, 6, 1.
(23) Fujisawa, K.; Kobayashi, T.; Kitajima, N.; Moro-oka, Y. J. Am. Chem.
Soc. 1996, 118, 1. (b) Kitajima, N.; Katayama, T.; Fujisawa, K.; Iwata,
Y.; Moro-oka, Y. J. Am. Chem. Soc. 1993, 115, 7872. (c) Sanyal, I.; Ghosh,
P.; Karlin, K. Inorg. Chem. 1995, 34, 3050. (d) Chen, P.; Fujisawa, K.;
Solomon, E. I. J. Am. Chem. Soc. 2000, 122, 10177. (e) Wada, A.; Harata,
M.; Hasegawa, K.; Jitsukawa, K.; Masuda, H.; Mukai, M.; Kitagawa, T.;
Einaga, H. Angew. Chem., Int. Ed. 1998, 37, 798. (f) Kodera, M.; Kita, T.;
Miura, I.; Nakayama, N.; Kawata, T.; Kano, K.; Hirota, S. J. Am. Chem.
Soc. 2001, 123, 7715. (g) Yamaguchi, S.; Nagatomo, S.; Kitagawa, T.;
Funahashi, Y.; Ozawa, T.; Jitsukawa, K.; Masuda, H. Inorg. Chem. 2003,
42, 6968. (h) Fujii, T.; Naito, A.; Yamaguchi, S.; Wada, A.; Funahashi,
Y.; Jitsukawa, K.; Nagatomo, S.; Kitagawa, T.; Masuda, H. Chem. Commun.
2003, 2700.
(14) Whittaker, J. W. Chem. ReV. 2003, 103, 2347.
(15) Dooley, D. M. J. Biol. Inorg. Chem. 1999, 4, 1. (b) Rogers, M. S.; Baron,
A. J.; McPherson, M. J.; Knowles, P. F.; Dooley, D. M. J. Am. Chem. Soc.
2000, 122, 990. (c) Firbank, S. J.; Rogers, M. S.; Wilmot, C. M.; Dooley,
D. M.; Halcrow, M. A.; Knowles, P. F.; McPherson, M. J. Proc. Natl.
Acad. Sci. U.S.A. 2001, 98, 12932.
(16) Wilmot, C. M.; Hajdu, J.; Mcpherson, M. J.; Knowles, P. F.; Phillips, S.
E. V. Science 1999, 286, 1724.
(17) For selected recent reviews, see: (a) Mirica, L. M.; Ottensaelder, X.; Stack,
T. D. P. Chem. ReV. 2004, 104, 1013. (b) Lewis, E. A.; Tolman, W. B.
Chem. ReV. 2004, 104, 1047. (c) Itoh, S. In ComprehensiVe Coordination
Chemistry II; McCleverty, J. A., Meyer, T. J., Eds.; Elsevier: Amsterdam,
2004; Vol. 8, pp 369-393. (d) Stack, T. D. P. Dalton Trans. 2003, 1881.
(e) Que, L., Jr.; Tolman, W. B. Angew. Chem., Int. Ed. 2002, 41, 1114. (f)
Kopf, M.-A.; Karlin, K. D. In Biomimetic Oxidations Catalyzed by
Transition Metal Complexes; Meunier, B., Ed.; Imperial College Press:
London, 2000; pp 309-362.
(24) Karlin, K. D.; Tolman, W. B.; Kaderli, S.; Zuberbu¨hler, A. D. J. Mol. Catal.
A 1997, 117, 215.
(25) Schindler, S. Eur. J. Inorg. Chem. 2000, 2311.
(26) For a previous report on the kinetics of the formation of a 1:1 Cu/O2 adduct
supported by BQPA (a bis(quinolyl) derivative of TMPA) that has been
revised (2:1 species are involved instead), see: (a) Karlin, K. D.; Wei, N.;
Jung, B.; Kaderli, S.; Niklaus, P.; Zuberbu¨hler, A. D. J. Am. Chem. Soc.
1993, 115, 9506. (b) Wick, P. K.; Karlin, K. D.; Suzuki, M.; Zuberbu¨hler,
A. D. Micron 2004, 35, 137.
(18) Fujisawa, K.; Tanaka, M.; Moro-oka, Y.; Kitajima, N. J. Am. Chem. Soc.
1994, 116, 12079.
(19) Chen, P.; Root, D. E.; Campochiaro, C.; Fujisawa, K.; Solomon, E. I. J.
Am. Chem. Soc. 2003, 125, 466.
(27) Zhang, C. X.; Kaderli, S.; Costas, M.; Kim, E.; Neuhold, Y.-M.; Karlin,
K. D.; Zuberbu¨hler, A. D. Inorg. Chem. 2003, 42, 1807.
(28) Fry, H. C.; Scaltrito, D. V.; Karlin, K. D.; Meyer, G. J. J. Am. Chem. Soc.
2003, 125, 11866.
(20) Chaudhuri, P.; Hess, M.; Weyhermu¨ller, T.; Wieghardt, K. Angew. Chem.,
Int. Ed. 1999, 38, 1095.
(21) Jazdzewski, B. A.; Reynolds, A. M.; Holland, P. L.; Young, V. G., Jr.;
Kaderli, S.; Zuberbu¨hler, A. D.; Tolman, W. B. J. Biol. Inorg. Chem. 2003,
8, 381.
(22) Komiyama, K.; Furutachi, H.; Nagatomo, S.; Hashimoto, A.; Hayashi, H.;
Fujinami, S.; Suzuki, M.; Kitagawa, T. Bull. Chem. Soc. Jpn. 2004, 77,
59. (b) Weitzer, M.; Schindler, S.; Brehm, G.; Schneider, S.; Ho¨rmann,
E.; Jung, B.; Kaderli, S.; Zuberbu¨hler, A. D. Inorg. Chem. 2003, 42, 1800.
(29) Spencer, D. J. E.; Reynolds, A. M.; Holland, P. L.; Jazdzewski, B. A.;
Duboc-Toia, C.; Pape, L. L.; Yokota, S.; Tachi, Y.; Itoh, S.; Tolman, W.
B. Inorg. Chem. 2002, 41, 6307.
(30) Spencer, D. J. E.; Aboelella, N. W.; Reynolds, A. M.; Holland, P. L.;
Tolman, W. B. J. Am. Chem. Soc. 2002, 124, 2108.
(31) Aboelella, N. W.; Lewis, E. A.; Reynolds, A. M.; Brennessel, W. W.;
Cramer, C. J.; Tolman, W. B. J. Am. Chem. Soc. 2002, 124, 10660.
9
J. AM. CHEM. SOC. VOL. 126, NO. 51, 2004 16897