methods involve hazardous reagents such as diazo com-
pounds and extra synthetic steps to access the required
precursors. Alternatively, an intramolecular arylation
strategy involving a direct functionalization of R-(sp3)-H
from cyclopropyl anilides would permit exploitation of
readily accessible, easier to handle starting materials, thus,
circumventing the use of the above-mentioned reagents.
Scheme 2. Effect of Aromatic Substitutiona
Scheme 1. Routes To Access Spiro 3,30-Cyclopropyl Oxindoles
a Reactions were performed on 0.5 mmol scale. Isolated yields.
preparation of numerous other relevant compounds.17
Cognizant of this, our group has been actively involved
in developing novel cyclopropanation methodologies.18
With this interest, in conjunction with our experience
in the direct arylation of C(sp3)ꢀH centers, we turned
our attention to developing methods for functionalizing
cyclopropane CꢀH bonds. The potential for direct func-
tionalization methods for cyclopropanes remains largely
untapped, despite the pseudo sp2 natureofthese bondsand
their pKa, which is highly suited for insertion.19 Herein,
we disclose a novel intramolecular Pd-catalyzed aryla-
tion of 2-bromoanilides, producing spiro 3,30-cyclopropyl
oxindoles in the presence of Ag(I) salts. Additionally,
mechanistic studies were performed to eliminate the possi-
bility of the arylation proceeding via enolate pathways,
supporting a direct arylation scaffold.
Progress within the field of direct CꢀH functionaliza-
tion has contributed new synthetic pathways, leading to
more streamlined chemical syntheses.13 Earlier work by
our group has focused on the direct functionalization of
various arenes, providing facile access to relevant hetero-
cyclic and nonheterocyclic compounds.14 For example, we
reported the direct benzylic arylation of N-iminopyridinium
ylides with aryl chlorides.15 Considering the prevalence
of C(sp3)ꢀH bonds, we directed our interests to targeting
other direct functionalizations involving these bonds.16
Cyclopropanes have been established as key alkene
isosteres in various pharmacologically active compounds.
They are also present in natural products and have been
applied as valuable synthetic precursors en route to the
Our initial optimization of the arylation of 2-bromoanilide
1a revealed that Pd(OAc)2 (5 mol %), PCy3 (5 mol%), and
K2CO3 (1.5 equiv) were optimal. Only 1 equiv of cationic
Ag was required, and this could also be delivered using
Ag3PO4.20,21 Aryl bromides proved optimal, as chloro
(12) Kumari, G.; Nutan; Modi, M.; Gupta, S. K.; Singh, R. K. Eur. J.
Med. Chem. 2011, 46, 1181.
(13) For selected reviews, see: (a) Alberico, D.; Scott, M. E.; Lautens,
M. Chem. Rev. 2007, 107, 174. (b) Lyons, T. W.; Sanford, M. S. Chem.
Rev. 2010, 110, 1147. (c) Daugulis, O.; Do, H.; Shabashov, D. Acc.
Chem. Res. 2009, 42, 1074.
(18) For recent examples: (a) Lindsay, V. N. G.; Nicolas, C.;
Charette, A. B. J. Am. Chem. Soc. 2011, 133, 8972. (b) Beaulieu, L. P.;
Zimmer, L. E.; Gagnon, A.; Charette, A. B. Chem.;Eur. J. 2012, 18,
14784. (c) Marcoux, D.; Azzi, S.; Charette, A. B. J. Am. Chem. Soc. 2009,
131, 6970. (d) Goudreau, S. R.; Charette, A. B. J. Am. Chem. Soc. 2009,
131, 15633.
(14) (a) Mousseau, J. J.; Charette, A. B. Acc. Chem. Res. 2013, 46,
412. (b) Mousseau, J. J.; Bull, J. A.; Charette, A. B. Angew. Chem., Int.
ꢀ
Ed. 2010, 49, 1115. (c) Larivee, A.; Mousseau, J. J.; Charette, A. B.
J. Am. Chem. Soc. 2008, 130, 52. (d) Mousseau, J. J.; Bull, J. A.; Ladd,
C. L.; Fortier, A.; Sustac Roman, D.; Charette, A. B. J. Org. Chem. 2011,
76, 8243.
(19) (a) Wasa, M.; Engle, K. M.; Lin, D. W.; Yoo, E. J.; Yu, J. Q.
ꢀ
J. Am. Chem. Soc. 2011, 133, 19598. (b) Rousseaux, S.; Liegault, B.;
ꢀ
(15) Mousseau, J. J.; Larivee, A.; Charette, A. B. Org. Lett. 2008, 10,
1641.
Fagnou, K. Chem. Sci. 2012, 3, 244. (c) Saget, T.; Cramer, N. Angew.
Chem., Int. Ed. 2012, 51, 12842. (d) Kubota, A.; Sanford, M. S. Synthesis
2011, 2579. (e) Giri, R.; Chen, X.; Yu, J. Q. Angew. Chem., Int. Ed. 2005,
44, 2112. (f) Ackermann, A.; Kozhushkov, S. I.; Yufit, D. S. Chem.;
Eur. J. 2012, 18, 12068.
(16) For selected reviews, see: (a) Li, H.; Li, B.-J.; Shi, Z.-J. Catal. Sci.
Technol. 2011, 1, 191. (b) Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-
Kreutzer, J.; Baudoin, O. Chem.;Eur. J. 2010, 16, 2654.
(17) (a) Lebel, H.; Marcoux, J.; Molinaro, C.; Charette, A. B. Chem.
Rev. 2003, 103, 977. (b) Donaldson, W. A. Tetrahedron 2001, 57, 8589.
(20) The reaction was both hindered by the excess and lack of
1.0 equiv of cationic Ag.
Org. Lett., Vol. 15, No. 6, 2013
1351