Scheme 1
Scheme 2
inhibitory activity rivaling that of the natural product.6f Herein
we describe the design, syntheses, and biological evaluation
of derivatives of (+)-1, (+)-3, and (+)-4, which explore the
influence of substitution at the C(19) carbamate.
Employing the synthetically simplified 14-normethyl-
discodermolide scaffold for our initial investigations, we
treated the previously disclosed secondary alcohol (+)-56f
with a range of sterically and electronically varied isocyan-
ates, followed by global deprotection to furnish the corre-
sponding carbamates 6-16 in good to excellent yield
(Scheme 3). Additionally, direct deprotection of (+)-5
furnished descarbamoyl congener (+)-17.
to provide material for clinical development, we broadened
our program to include the production of analogues designed
to probe the structure-activity relationship, as well as to
define the minimum critical structural element necessary for
tumor cell growth inhibition.
Toward this end, we reported in 2001 that the simplified
congeners (+)-14-normethyldiscodermolide (3, Scheme 2)
and (+)-2,3-anhydrodiscodermolide (4) display cell growth
(5) (a) Nerenberg, J. B.; Hung, D. T.; Somers, P. K.; Schreiber, S. L. J.
Am. Chem. Soc. 1993, 115, 12621-12622. (b) Smith, A. B., III; Qiu, Y.;
Jones, D. R.; Kobayashi, K. J. Am. Chem. Soc. 1995, 117, 12011-12012.
(c) Harried, S. S.; Yang, G.; Strawn, M. A.; Myles, D. C. J. Org. Chem.
1997, 62, 6098-6099. (d) Marshall, J. A.; Johns, B. A. J. Org. Chem. 1998,
63, 7885-7892. (e) Smith, A. B., III; Kaufman, M. D.; Beauchamp, T. J.;
LaMarche, M. J.; Arimoto, H. Org. Lett. 1999, 1, 1823-1826. (f) Halstead,
D. P. Ph.D. Thesis, Harvard University, Cambridge, MA, 1999. (g) Paterson,
J.; Florence, G. J.; Gerlach, K.; Scott, J. Angew. Chem., Int. Ed. 2000, 39,
377-380. (h) Smith, A. B., III; Beauchamp, T. J.; LaMarche, M. J.;
Kaufman, M. D.; Qiu, Y.; Arimoto, H.; Jones, D. R.; Kobayashi, K. J. Am.
Chem. Soc. 2000, 122, 8654-8664. (i) Paterson, I.; Florence, G. J.; Gerlach,
K.; Scott, J. P.; Sereinig, N. J. Am. Chem. Soc. 2001, 123, 9535-9544. (j)
Harried, S. S.; Lee, C. P.; Yang, G.; Lee, T. I. H.; Myles, D. C. J. Org.
Chem. 2003, 68, 6646-6660. (k) Paterson, I.; Delgado, O.; Florence, G.
J.; Lyothier, I.; Scott, J. P.; Sereinig, N. Org. Lett. 2003, 5, 35-38. (l)
Smith, A. B., III; Freeze, B. S.; Brouard, I.; Hirose, T. Org. Lett. 2003, 5,
4405-4408. (m) Mickel, S. J.; Sedelmeier, G. H.; Niederer, D.; Daeffler,
R.; Osmani, A.; Schreiner, K.; Seeger-Weibel, M.; Berod, B.; Schaer, K.;
Gamboni, R.; Chen, S.; Chen, W.; Jagoe, C. T.; Kinder, F. R., Jr.; Loo,
M.; Prasad, K.; Repic, O.; Shieh, W.-C.; Wang, R.-M.; Waykole, L.; Xu,
D. D.; Xue, S. Org. Proc. Res. DeV. 2004, 8, 92-130 and references therein.
(n) Paterson, I.; Lyothier, I. Org. Lett. 2004, 6, 4933-4936.
Scheme 3
(6) (a) Hung, D. T.; Nerenberg, J. B.; Schreiber, S. L. Chem. Biol. 1994,
1, 67-71. (b) Hung, D. T.; Nerenberg, J. B.; Schreiber, S. L. J. Am. Chem.
Soc. 1996, 118, 11054-11080. (c) Paterson, I.; Florence, G. J. Tetrahedron
Lett. 2000, 41, 6935-6939. (d) Gunasekera, S. P.; Longley, R. E.; Isbrucker,
R. A. J. Nat. Prod. 2001, 64, 171-174. (e) Isbrucker, R. A.; Gunasekera,
S. P.; Longley, R. E. Cancer Chemother. Pharmacol. 2001, 48, 29-36. (f)
Martello, L. A.; LaMarche, M. J.; He, L.; Beauchamp, T. J.; Smith, A. B.,
III; Horwitz, S. B. Chem. Biol. 2001, 8, 843-855. As they were not included
in the original paper, full experimental details for the compounds reported
therein are provided in the Supporting Information of this work. (g) Curran,
D. P.; Furukawa, T. Org. Lett. 2002, 4, 2233-2235. (h) Gunasekera, S. P.;
Longley, R. E.; Isbrucker, R. A. J. Nat. Prod. 2002, 65, 1830-1837. (i)
Gunasekera, S. P.; Paul, G. K.; Longley, R. E.; Isbrucker, R. A.; Pomponi,
S. A. J. Nat. Prod. 2002, 6, 1643-1648. (j) Minguez, J. M.; Giuliano, K.
A.; Balachandran, R.; Madiraju, C.; Curran, D. P.; Day, B. W. Mol. Cancer
Ther. 2002, 1, 1305-1313. (k) Shin, Y.; Choy, N.; Balachandran, R.;
Madiraju, C.; Day, B. W.; Curran, D. P. Org. Lett. 2002, 4, 4443-4446.
(l) Choy, N.; Shin, Y.; Nguyen, P. Q.; Curran, D. P.; Balachandran, R.;
Madiraju, C.; Day, B. W. J. Med. Chem. 2003, 46, 2846-2864. (m)
Minguez, J. M.; Kim, S.-Y.; Giuliano, K. A.; Balachandran, R.; Madiraju,
C.; Day, B. W.; Curran, D. P. Bioorg. Med. Chem. 2003, 11, 3335-3357.
(n) Paterson, I.; Delgado, O. Tetrahedron Lett. 2003, 44, 8877-8882. (o)
Burlingame, M. A.; Shaw, S. J.; Sundermann, K. F.; Zhang, D.; Petryka,
J.; Mendoza, E.; Liu, F.; Myles, D. C.; LaMarche, M. J.; Hirose, T.; Freeze,
B. S.; Smith, A. B., III. Bioorg. Med. Chem. Lett. 2004, 14, 2335-2338.
(p) Gunasekera, S. P.; Mickel, S. J.; Daeffler, R.; Niederer, D.; Wright, A.
E.; Linley, P.; Pitts, T. J. Nat. Prod. 2004, 67, 749-756.
In three of the four cell lines tested (Table 1), attachment
of the phenyl, p-fluorophenyl, p-bromophenyl, or pyridyl
substituents (6-8, 12) led to a slight reduction in cell growth
inhibition (a factor of 2-3), whereas carbamates possessing
either a benzophenone moiety (10), electron-rich aromatics
(9, 11), or nonpolar substituents such as n-propyl, allyl, and
benzyl (13-15), yielded analogues with potency comparable
to that of the natural product. Alternatively, the phenyl
sulfonamide congener 16 displays significantly reduced
cytotoxicity, as does the carbamate-deletion analogue 17.7
312
Org. Lett., Vol. 7, No. 2, 2005