Chemistry Letters Vol.33, No.12 (2004)
1593
Table 1. Cross metathesis reactions using Ru cat. 2a
89% yield. It is noteworthy that the phosphorylation selectively
proceeded at the primary hydroxy group without protection of
the secondary hydroxy group. The obtained bromide showed a
normal polarity and was easily purified by column chromatogra-
phy. Removal of the tert-butoxycarbonyl group of 15 by treat-
ment with trifluoroacetic acid followed by the introduction of
an acyl group onto the resulting primary amine produced amide
16. Finally, the obtained bromide 16 was treated with trimethyl-
amine in methanol in an autoclave at 60 ꢂC to afford natural
sphingomyelin 17 in 46% yield. This is a new route for the syn-
thesis of sphingomyelin.
In conclusion, the cross metathesis method is a very conven-
ient way to produce sphingolipid derivatives and the further de-
velopment of this method for the synthesis of other sphingolipid
derivatives such as fluorescence and photoaffinity labeled com-
pounds is now in progress.
R1
R1
NH
NH
Grubbs cat. 2
OR3
C13H27
OR3
+
C13H27
7
OR2
OR2
Entry
1
Substrate
O
Yield/%
Selectivity
Catalyst/equiv.
0.05 X 6
HN
O
E only
69
67
8
OTBS
O
Boc
N
O
E only
0.05 X 6
2
9
OTBS
O
HN
O
0.05 X 6
0.05 X 6
3
4
76
18
E : Z=18 : 1
10
OBoc
This work was partly supported by a Grant-in-Aid for
Scientific Research from Ministry of Education, Culture, Sports,
Science and Technology, Japan.
Boc
NH
N. D.
OH
11
OTBS
Boc
References and Notes
NH
0.05 X 6
5
mixture of E&Z
N. D.
1
For recent reviews on signal transduction mediated by
sphingolipids, see: a) W. L. Smith and A. H. Merrill, Jr., J.
Biol. Chem., 277, 25841 (2002). b) A. E. Cremesti, F. M. Goni,
and R. Kolesnick, FEBS Lett., 531, 47 (2002) and references
cited therein.
OTBS
OH
12
OTBS
Boc
E only
E only
0.05 + 0.03
0.05 + 0.03
6
7
62
NH
30b
13
2
a) A. Suzuki and Y. Igarashi, Tanpakushitsu Kakusan Koso,
47, 315 (2002). b) K. Simons and E. Ikonen, Science, 290,
1721 (2000). c) K. Simons and E. Ikonen, Nature, 387, 569
(1997) and references cited therein.
OH
aAll reactions were conducted in benzene at 55 ꢂC.
b2 equivalents of 7 were used.
3
4
5
6
M. Murakami, S. Iwama, S. Fujii, K. Ikeda, and S. Katsumura,
Bioorg. Med. Chem. Lett., 7, 1725 (1997).
T. Hakogi, T. Shigenari, S. Katsumura, T. Sano, T. Kohno, and
Y. Igarashi, Bioorg. Med. Chem. Lett., 13, 661 (2003).
T. Shigenari, T. Hakogi, and S. Katsumura, Chem. Lett., 33,
594 (2004).
a) R. H. Grubbs, ‘‘Handbook of Metathesis,’’ Wiley-VCH,
Germany (2003). b) S. J. Connon and S. Blechert, Angew.
Chem., Int. Ed., 42, 1900 (2003) and references cited therein.
a) A. N. Rai and A. Basu, Org. Lett., 6, 2861 (2004). b) S.
Torssell and P. Somfai, Org. Biomol. Chem., 2, 1643 (2004).
a) S. Katsumura, N. Yamamoto, M. Morita, and Q. Han, Tetra-
hedron: Asymmetry, 5, 161 (1994). b) K. Asano, T. Hakogi, S.
Iwama, and S. Katsumura, Chem. Commun., 1999, 41.
S. Iguchi, H. Nakai, M. Hayashi, and H. Yamamoto, J. Org.
Chem., 44, 1363 (1979).
Boc
Boc
NH
NH
i
OH
C13H27
OH
13
OH
14
OH
MeO
MeO
P
O
Br
Boc
A
NH
ii
C13H27
O
O
P
Br
O
OMe
15
OH
7
8
O
C
13H27
NH
iii
C13H27
O
O
P
Br
O
OMe
9
16
OH
O
10 M. S. Sanford, M. Ulman, and R. H. Grubbs, J. Am. Chem.
Soc., 123, 749 (2001).
11 a) M. Scholl, S. Ding, C. W. Lee, and R. H. Grubbs, Org. Lett.,
1, 953 (1999). b) C. Morrill and R. H. Grubbs, J. Org. Chem.,
68, 6031 (2003).
C13H27
C13H27
NH
iv
O
O
P
NMe3
O O
17
OH
Scheme 2. Reagents and conditions: i) see Table 1. ii) CBr4, A,
pyr., 0 ꢂC, 89%. iii) a) TFA, CH2Cl2, 0 ꢂC. b) C13H27COCl,
K2CO3, THF, H2O, 85% for 2 steps. iv) NMe3, MeOH, 46%.
12 Data for A; IR (NaCl neat) 2948, 2838, 1456, 1287, 1181,
1
1005 cmꢁ1; H NMR (CDCl3, 400 MHz) ꢀ 4.10 (td, J ¼ 6:6,
7.6 Hz, 2H), 3.55 (d, J ¼ 10:7 Hz, 6H), 3.49 (t, J ¼ 6:6 Hz,
2H); 13C NMR (CDCl3, 100 MHz) ꢀ 62.0 (JC-P ¼ 11:6 Hz),
49.3 (JC-P ¼ 10:8 Hz), 31.2 (JC-P ¼ 4:1 Hz); 31P NMR (CDCl3,
122 MHz) ꢀ 141.2.
uct (Entry 7).
Furthermore, natural sphingomyelin was conveniently syn-
thesized from the obtained N-Boc sphingosine 14. Phosphoryla-
tion of the compound 14 was successfully realized by a treatment
with compound A,12,13 which was developed in our laboratory,
and carbon tetrabromide in pyridine to give compound 15 in
13 In this time, we have first realized the isolation and
characterization of the compound A. The in situ preparation
of the compound A was reported. E. K. Hendrickson and
H. S. Hendrickson, Chem. Phys. Lipids, 109, 203 (2001).
Published on the web (Advance View) November 13, 2004; DOI 10.1246/cl.2004.1592