Article
Inorganic Chemistry, Vol. 48, No. 16, 2009 8045
as shown in Figure 1a.1,3 The other is the dta system,
represented as M2(RCS2)4I (M = Pt, Ni; R = alkyl group),
which consists of neutral MMX chains without counterions,
as shown in Figure 1b.2 Extensive work on both the pop and
dta systems has revealed that the pop system exhibits semi-
conducting or insulating behavior whereas the dta system is
highly conductive, and some platinum complexes exhibit
metallic conduction and metal-insulator transitions.1-4
The CP or CDW state of the pop system is the ground state,
and some types undergo photoinduced or pressure-induced
phase transitions between the CP and CDW phases. In
contrast, in the dta system, the AV state is often observed
in the metallic phase. At low temperatures, a metal-insulator
transition occurs because of the strong electron-lattice
interactions.2 The ground state of the dta system is consid-
ered to be in the ACP state.4e-g These data clearly indicate
that the electronic states in the dta and pop systems differ
markedly, although their Pt dimer units are in the isoelec-
tronic d7-d8 configuration. The origin of these differences in
their electronic states is still under discussion. Except for
some theoretical studies,5,6 there have been few systematic
studies of the two MMX chain systems. To gain insight into
the origin of the differences between the dta and pop systems,
some quantitative measurements must be made to investigate
Figure 1. Crystal structures of (a) [NH3(CH2)6NH3]2[Pt2(pop)4I] and
(b) Pt2(dtp)4I.
the electronic states of the MMX chain complexes.
::
Mossbauer spectroscopy has been widely used to investigate
the valence states of measurable atoms (such as 57Fe, 119Sn,
::
129I, and 197Au).7 The Mossbauer parameters, isomer shift
(IS) and the quadrupole coupling constant (QCC), allow us
to discuss the electronic states of measured atoms quantita-
::
tively. Therefore, we have used 129I Mossbauer spectroscopy
to probe the differences between the electronic states of the
two MMX chain systems. We also measured as controls the
spectra of Pt(III) dimer complexes, which are the precursors
(3) (a) Che, C. M.; Schaefer, W. P.; Grey, H. B.; Dickson, M. K.; Stein, P.
B.; Roundhill, D. M. J. Am. Chem. Soc. 1982, 104, 4253–4255. (b) Stein, P.;
Dickson, M. K.; Roundhill, D. M. J. Am. Chem. Soc. 1983, 105, 3489–3494. (c)
Kurmoo, M.; Clark, R. J. H. Inorg. Chem. 1985, 24, 4420–4425. (d) Clark, R. J.
H.; Kurmoo, M. J. Chem. Soc., Dalton Trans. 1985, 579–586. (e) Che, C. M.;
Herbstein, F. H.; Schaefer, W. P.; Marsh, R. E.; Gray, H. B. J. Am. Chem. Soc.
1983, 105, 4604–4607. (f) Swanson, B. I.; Stroud, M. A.; Conradson, S. D.;
Zietlow, M. H. Solid State Commun. 1988, 65, 1405–1409. (g) Butler, L. G.;
Zietlow, M. H.; Che, C. M.; Schaefer, W. P.; Sridhar, S.; Grunthaner, P. J.;
Swanson, B. I.; Clark, R. J. H.; Gray, H. B. J. Am. Chem. Soc. 1988, 110, 1155–
1162. (h) Kimura, N.; Ohki, H.; Ikeda, R.; Yamashita, M. Chem. Phys. Lett.
1994, 220, 40. (i) Yamashita, M.; Miya, S.; Kawashima, T.; Manabe, T.;
Sonoyama, T.; Kitagawa, H.; Mitani, T.; Okamoto, H.; Ikeda, R. J. Am. Chem.
Soc. 1999, 121, 2321–2322. (j) Yamashita, M.; Takizawa, K.; Matsunaga, S.;
Kawakami, D.; Iguchi, H.; Takaishi, S.; Kajiwara, T.; Miyasaka, H.; Sugiura, K.;
Matsuzaki, H.; Okamoto, H.; Wakabayashi, Y.; Sawa, H. Bull. Chem. Soc. Jpn.
2006, 79, 1404–1406. (k) Matsunaga, S.; Takizaki, K.; Kawakami, D.; Iguchi, H.;
Takaishi, S.; Kajiwara, T.; Miyasaka, H.; Yamashita, M.; Matsuzaki, H.;
Okamoto, H. Eur. J. Inorg. Chem. 2008, 3269–3273. (l) Iguchi, H.; Takaishi,
S.; Kajiwara, T.; Miyasaka, H.; Yamashita, M.; Matsuzaki, H.; Okamoto, H. J.
Am. Chem. Soc. 2008, 130, 17668–17669. (m) Iguchi, H.; Takaishi, M.;
Kajiwara, T.; Miyasaka, H.; Yamashita, M.; Matsuzaki, H.; Okamoto, H. J.
Inorg. Organomet. Polym. 2009, 19, 85–90.
(4) (a) Bellitto, C.; Flamini, A.; Gastaldi, L.; Scaramuzza, L. Inorg. Chem.
1983, 22, 444–449. (b) Bellitto, C.; Dessy, G.; Fares, V. Inorg. Chem. 1985, 24,
2815–2820. (c) Kitagawa, H.; Onodera, N.; Ann, J. S.; Mitani, T.; Toriumi, K.;
Yamashita, M. Mol. Cryst. Liq. Cryst. 1996, 285, 311. (d) Kitagawa, H.;
Onodera, N.; Mitani, T.; Toriumi, K.; Yamashita, M. Synth. Met. 1997, 86, 1931–
1932. (e) Mitsumi, M.; Kitamura, K.; Morinaga, A.; Ozawa, Y.; Kobayashi, M.;
Toriumi, K.; Iso, Y.; Kitagawa, H.; Mitani, T. Angew. Chem., Int. Ed. 2002, 41,
2767–2771. (f) Kitagawa, H.; Sonoyama, T.; Mitani, T.; Seto, M.; Maeda, Y.
Synth. Met. 1999, 103, 2159. (g) Kitagawa, H.; Mitani, T. Coord. Chem. Rev.
1999, 190-192, 1169–1184. (h) Makiura, R.; Kitagawa, H.; Ikeda, R. Mol.
Cryst. Liq. Cryst. 2002, 379, 309–314. (i) Mitsumi, M.; Umebayashi, S.; Ozawa,
Y.; Toriumi, K.; Kitagawa, H.; Mitani, T. Chem. Lett. 2002, 258–259. (j)
Kobayashi, A.; Kitagawa, H.; Ikeda, R.; Kitao, S.; Seto, M.; Mitsumi, M.;
Toriumi, K. Synth. Met. 2003, 135-136, 405. (k) Kobayashi, A.; Kojima, T.;
Ikeda, R.; Kitagawa, H. Inorg. Chem. 2006, 45, 322–327. (l) Kobayashi, A.;
Kitagawa, H. J. Am. Chem. Soc. 2006, 128, 12066–12067.
of MMX chain complexes.
::
In this paper, we report the 129I Mossbauer spectra of these
two types of MMX chain systems, and we discuss the
electronic states of the iodide-bridged MMX chain com-
plexes quantitatively.
Experimental Section
Synthesis. The starting materials, tetrakis(dithioacetato)-
diplatinum(II), Pt2(dta)4 (dta = CH3CS2-);8 tetrakis(dithiopro-
pionate)diplatinum(II), Pt2(dtp)4 (dtp = CH3CH2CS2-);9 and
potassium tetrakis(pyrophosphito)diplatinate(II), K4[Pt2(pop)4],10
were prepared according to the published procedures.
::
Sample Preparation for 129I Mossbauer Spectroscopy. The
samples for iodine Mossbauer spectroscopy were synthesized
::
using the radioisotope 129I at the Kyoto University Reactor
(KUR) with the following chemical reactions.
For Pt2(dta)4I2 (1), Pt2(dtp)4I2 (2), and Pt2(dtp)4I (3):
2Na129I þ Na2SO3 þ 2H2O2 þ H2SO4 f 2Na2SO4
þ 3H2O þ 129I2
ðIÞ
Pt2ðdtaÞ4
þ
129I2 f Pt2ðdtaÞ 129I2 ð1Þ
ðIIÞ
4
::
(7) (a) Parish, R. V. Mossbauer Spectroscopy Applied to Inorganic
::
Chemistry. In Mossbauer Spectroscopy with Iodine Isotopes; Long, G. J.,
Ed.; Plenum: New York, 1984; Vol. 2, p 391 and references therein. (b) Ruby, S.
::
(5) (a) Yamamoto, S. J. Phys. Chem. Solids 2002, 63, 1489–1493. (b)
Yamamoto, S. J. Phys. Soc. Jpn. 2001, 70, 1198–1201. (c) Yonemitsu, K.;
Miyashita, N. Phys. Rev. B 2003, 68, 075113. (d) Yamamoto, S.; Ichioka, M. J.
Phys. Soc. Jpn. 2002, 71, 189–196. (e) Ohara, J.; Yamamoto, S. Phys. Rev. B
2004, 70, 115112. (f) Ohara, J.; Yamamoto, S. J. Phys. Soc. Jpn. 2005, 74, 250–
253. (g) Ohara, J.; Yamamoto, S. J. Phys. Chem. Solids 2005, 66, 1571–1574.
(6) (a) Kuwabara, M.; Yonemitsu, K. J. Mater. Chem. 2001, 11, 2163–
2175. (b) Kuwabara, M.; Yonemitsu, K. Physica B 2000, 284-288, 1545–1546.
L.; Shenoy, G. K. In Mossbauer Isomer Shifts; Hendy, G. K., Wagner, F. E., Eds;
North-Holland: Amsterdam, 1978; Chapter 9b.
(8) Bellitto, C.; Flamini, A.; Piovesana, O.; Zanazzi, P. F. Inorg. Chem.
1980, 19, 3632.
(9) Mitsumi, M.; Yoshinari, T.; Ozawa, Y.; Toriumi, K. Mol. Cryst. Liq.
Cryst. 2000, 342, 127.
(10) Che, C. M.; Butler, L. G.; Grunthaner, P. J.; Gray, H. B. Inorg.
Chem. 1985, 24, 4662–4665.