2802
X.-j. Wang et al.
LETTER
Table 1 Preparation of 14 and 1
References
(1) (a) Wang, X.-J.; Zhang, L.; Xu, Y.; Krishnamurthy, D.;
Varsolona, R.; Nummy, L.; Frutos, R. P.; Byrne, D.; Chung,
J. C.; Senanayake, C. Tetrahedron Lett. 2004, 45, 7167.
(b) Frutos, R. P.; Johnson, M. Tetrahedron Lett. 2003, 44,
6509.
(2) (a) Kelly, T. A.; Jeanfavre, D. D.; McNeil, D. W.; Woska, J.
R. Jr.; Reily, P. L.; Mainolfi, E. A.; Kishimoto, K. M.;
Nabozny, G. H.; Zinter, R.; Bormann, B.-J.; Rothlein, R. J.
Immunol. 1999, 163, 5173. (b) Last-Barney, K.; Davidson,
W.; Cardozo, M.; Frye, L. L.; Grygon, C. A.; Hopkins, J. L.;
Jeanfavre, D. D.; Pav, S.; Qian, C.; Stevenson, J. M.; Tong,
L.; Zindell, R.; Kelly, T. A. J. Am. Chem. Soc. 2001, 123,
5643. (c) Wu, J.-P.; Kelly, T. A.; Lemieux, R.; Goldberg, D.
R.; Emeigh, J. E.; Sorcek, R. J. U.S. Patent WO
2001007440, 2001.
Entry
X
R
Yield of 14 Yield of 1
(%)a
89
92
84
94
92
95
87
92
(%)b
93
96
87
93
85
87
88
88
92
1
2
3
4
5
6
7
8
9
3,5-Dichloro
3,5-Dichloro
3,5-Dichloro
3,5-Dichloro
3,5-Dichloro
4-Chloro
4-Chloro
3-Chloro
4-Fluoro
4-Cyano
H
4-Fluoro
3-Bromo
H
4-Chloro
(3) (a) Yee, N. K. Org. Lett. 2000, 2, 2781. (b) Frutos, R. P.;
Stehle, S.; Nummy, L.; Yee, N. K. Tetrahedron: Asymmetry
2001, 12, 101.
4-Chloro
4-Chloro
3,5-Dichloro 95
(4) (a) Seebach, D.; Sting, A. R.; Hoffmann, M. Angew. Chem.,
Int. Ed. Engl. 1996, 35, 2708. (b) Haef, R.; Aehi, J. D.;
Weber, T. Helv. Chim. Acta 1985, 68, 144.
a Isolated yield.
b Weight% assay by HPLC.
(5) For examples, see: (a) Linton, B. R.; Carr, A. J.; Orner, B.
P.; Hamilton, A. D. J. Org. Chem. 2000, 65, 1566.
(b) Yong, Y. F.; Kowalski, J. A.; Lipton, M. A. J. Org.
Chem. 1997, 62, 1540. (c) Roue, N.; Bergman, J.
Tetrahedron 1999, 55, 14729. (d) Schneider, S. E.; Bishop,
P. A.; Salazar, M. A.; Bishop, O. A.; Anslyn, E. V.
Tetrahedron 1998, 54, 15063.
(6) Perkins, J. J.; Zartman, A. E.; Meissner, R. S. Tetrahedron
Lett. 1999, 40, 1103.
(7) Seth, P. P.; Robison, D. E.; Jefferson, E. A.; Swayze, E. E.
Tetrahedron Lett. 2002, 43, 7303.
(8) For alternative synthesis of bicyclic guanidines, see:
(a) Corey, E. J.; Grogan, M. J. Org. Lett. 1999, 1, 157.
(b) Corey, E. J.; Ohtani, M. Tetrahedron Lett. 1989, 30,
5227. (c) Ostresh, J. M.; Schoner, C. C.; Hamashin, V. T.;
Nefzi, A.; Meyer, J.-P.; Houghten, R. A. J. Org. Chem.
1998, 63, 6509. (d) Watanabe, M.; Okada, H.; Teshima, T.;
Noguchi, M.; Kakehi, A. Tetrahedron 1996, 52, 2827.
(e) Kosasayama, A.; Konno, T.; Higashi, K.; Ishikawa, F.
Chem. Pharm. Bull. 1979, 27, 848. (f) Guinamant, J. L.;
Robert, A. Tetrahedron 1986, 42, 1169.
thioureas 14 to 9 followed by cyclization to 1 can be per-
formed in a one-pot operation. Once complete transforma-
tion of 14 to 9 was achieved, 0.1 equivalents of PPTS was
added to the reaction mixture and PPTS-promoted cy-
clization of 9 took place smoothly to afford 1 in >85%
yield over two steps.8 It was unnecessary to isolate bicy-
clic guanidines 1 since the crude products had a purity of
>95%. Bicyclic guanidines 1 were successfully converted
to iodoimidazoles 2 using the published procedure with-
out any difficulty for further elaboration to LFA-1 inhibi-
tors.1 3,5-Dichloro and 4-chloroaniline as by-products in
this step were recovered.
In conclusion, a practical synthesis of highly functional-
ized fused 1,6-dihydroimidazo[1,2-a]imidazole-2,5-di-
ones, key intermediates for the synthesis of LFA-1
inhibitors, has been developed. Contrary to the ones pre-
vious described, this route represents the first practical
approach to a series of bicyclic guanidine derivatives 1
that are flexible enough to accommodate many different
aryl substituents at the lactam moiety.
Synlett 2004, No. 15, 2800–2802 © Thieme Stuttgart · New York