H. S. Lee et al. / Tetrahedron Letters 48 (2007) 4119–4122
Table 3. Synthesis of 2,3,4-trisubstituted pyrroles
4121
Chen, Q.; Wang, T.; Zhang, Y.; Wang, Q.; Ma, J. Synth.
Commun. 2002, 32, 1051–1058; (h) Nicolaou, I.; Demopo-
ulos, V. J. J. Med. Chem. 2003, 46, 417–426; (i) Gupton, J.
T.; Banner, E. J.; Scharf, A. B.; Norwood, B. K.; Kanters,
R. P. F.; Dominey, R. N.; Hempel, J. E.; Kharlamova, A.;
Bluhn-Chertudi, I.; Hickenboth, C. R.; Little, B. A.; Sartin,
M. D.; Coppock, M. B.; Krumpe, K. E.; Burnham, B. S.;
Holt, H.; Du, K. X.; Keertikar, K. M.; Diebes, A.;
Ghassemi, S.; Sikorski, J. A. Tetrahedron 2006, 62, 8243–
8255; (j) Cadamuro, S.; Degani, I.; Dughera, S.; Fochi, R.;
Gatti, A.; Piscopo, L. J. Chem. Soc., Perkin Trans. 1 1993,
273–283; (k) Cohnen, E.; Dewald, R. Synthesis 1987, 566–
568; (l) Misra, N. C.; Panda, K.; Ila, H.; Junjappa, H. J.
Org. Chem. 2007, 72, 1246–1251.
Entry
5 + 2
Time (h)
8 (%, syn/anti)a
10 (%)
1
2
3
4
5c + 2a
5c + 2b
5d + 2a
5e + 2a
8
8
10
20
8a (86, 66/20)
8b (73, 56/17)
8c (79, 59/20)
8d (50, 39/11)b
10a (71)
10b (51)
10c (67)
10d (67)
a Isolated yields of syn and anti isomers.
b The yield of 8d was relatively low due to low reactivity of 5e.
tions of 5c–e and 2 under the same conditions (K2CO3/
DMF) produced 8a–d as the major products as separa-
ble syn/anti mixtures.9 The formation of 8 can be
explained by an intramolecular aldol reaction of
intermediate (III). However, when we subjected 8 under
the conditions of DBU in CH3CN we could obtain
2,3,4-trisubstituted pyrroles 10a–d in moderate yields
(51–71%), fortunately. Compounds 8a–d could be con-
verted to intermediate (III) by the retro-aldol pathway
and intermediate (III) was slowly transformed to 9a–d
via the Michael addition pathway. The last step for
the formation of 10 from 9 could be explained as in
Schemes 1 and 2. The results are summarized in Scheme
3 and in Table 3.
3. For the examples on the synthesis of pyrroles from Baylis–
Hillman adducts, see: (a) Declerck, V.; Ribiere, P.; Marti-
nez, J.; Lamaty, F. J. Org. Chem. 2004, 69, 8372–8381; (b)
Shi, M.; Xu, Y.-M. Eur. J. Org. Chem. 2002, 696–701; (c)
Roy, A. K.; Pathak, R.; Yadav, G. P.; Maulik, P. R.; Batra,
S. Synthesis 2006, 1021–1027.
4. For our recent papers on chemical transformations involv-
ing the Baylis–Hillman adducts, see: (a) Gowrisankar, S.;
Lee, K. Y.; Kim, T. H.; Kim, J. N. Tetrahedron Lett. 2006,
47, 5785–5788; (b) Gowrisankar, S.; Lee, K. Y.; Kim, J. N.
Tetrahedron 2006, 62, 4052–4058; (c) Gowrisankar, S.; Lee,
K. Y.; Kim, J. N. Tetrahedron Lett. 2005, 46, 4859–4863;
(d) Lee, K. Y.; Gowrisankar, S.; Lee, Y. J.; Kim, J. N.
Tetrahedron 2006, 62, 8798–8804; (e) Park, D. Y.; Gowri-
sankar, S.; Kim, J. N. Tetrahedron Lett. 2006, 47, 6641–
6645; (f) Park, D. Y.; Kim, S. J.; Kim, T. H.; Kim, J. N.
Tetrahedron Lett. 2006, 47, 6315–6319; (g) Gowrisankar, S.;
Kim, S. J.; Kim, J. N. Tetrahedron Lett. 2007, 48, 289–292;
(h) Park, D. Y.; Lee, K. Y.; Kim, J. N. Tetrahedron Lett.
2007, 48, 1633–1636; (i) Kim, S. J.; Lee, H. S.; Kim, J. N.
Tetrahedron Lett. 2007, 48, 1069–1072, and further refer-
ences cited therein.
In summary, we developed an expeditious synthetic
method of poly-substituted pyrrole derivatives from
the reaction of phenacyl bromide and the aza-Baylis–
Hillman adducts or their rearranged derivatives via
successive N-alkylation, Michael addition, elimination
of p-toluenesulfinic acid and oxidative aromatization
processes. The studies on DBU-mediated interesting
oxidation process are underway.
5. For the synthesis of aza-Baylis–Hillman adducts and the
rearranged compounds, see: (a) Park, D. Y.; Lee, M. J.;
Kim, T. H.; Kim, J. N. Tetrahedron Lett. 2005, 46, 8799–
8803; (b) Lee, M. J.; Kim, S. C.; Kim, J. N. Bull. Korean
Chem. Soc. 2006, 27, 439–442; (c) Kim, J. N.; Lee, H. J.;
Lee, K. Y.; Gong, J. H. Synlett 2002, 173–175; (d) Balan,
D.; Adolfsson, H. J. Org. Chem. 2001, 66, 6498–6501; (e)
Balan, D.; Adolfsson, H. J. Org. Chem. 2002, 67, 2329–
2334; (f) Balan, D.; Adolfsson, H. Tetrahedron Lett. 2004,
45, 3089–3092.
6. For the synthesis of indole derivatives by using the similar
approach, N-alkylation with phenacyl bromide and the
following Michael type reaction, please see: Caron, S.;
Vazquez, E.; Stevens, R. W.; Nakao, K.; Koike, H.;
Murata, Y. J. Org. Chem. 2003, 68, 4104–4107.
Acknowledgments
This work was supported by the Korea Research Foun-
dation Grant funded by the Korean Government
(MOEHRD, KRF-2006-311-C00384). Spectroscopic
data were obtained from the Korea Basic Science Insti-
tute, Gwangju branch.
References and notes
7. Typical procedure for the synthesis of compound 4a and some
selected spectroscopic data of 4a, 7a, 8a-syn, 8a-anti and 10a
are as follows: A solution of 1a (329 mg, 1.0 mmol), K2CO3
(415 mg, 3.0 mmol) and 2a (300 mg, 1.5 mmol) in DMF
(2 mL) was stirred at room temperature for 24 h. After the
usual aqueous workup and column chromatographic puri-
fication process (hexanes/CH2Cl2/ether, 4:1:1) we obtained
compound 3a (313 mg, 70%) as a yellow solid (Rf value of
the major diastereoisomer on TLC is 0.25 in hexanes/
ether = 1:3). Compound 3a (224 mg, 0.5 mmol) was dis-
solved in CH3CN (2 mL) and DBU (228 mg, 1.5 mmol) was
added and stirred at room temperature for 24 h. After the
usual aqueous workup and column chromatographic puri-
fication process (hexanes/CH2Cl2/ether, 2:1:1) we obtained
compound 4a (79 mg, 54%) as a white solid.
1. For the review articles on Baylis–Hillman reaction, see: (a)
Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev.
2003, 103, 811–891; (b) Ciganek, E. In Organic Reactions;
Paquette, L. A., Ed.; John Wiley & Sons: New York, 1997;
Vol. 51, pp 201–350; (c) Basavaiah, D.; Rao, P. D.; Hyma,
R. S. Tetrahedron 1996, 52, 8001–8062; (d) Kim, J. N.; Lee,
K. Y. Curr. Org. Chem. 2002, 6, 627–645; (e) Lee, K. Y.;
Gowrisankar, S.; Kim, J. N. Bull. Korean Chem. Soc. 2005,
26, 1481–1490, and further references cited therein.
2. For the synthesis of poly-substituted pyrroles and their
biological activities, see: (a) Bellina, F.; Rossi, R. Tetrahe-
dron 2006, 62, 7213–7256; (b) Knight, D. W.; Sharland, C.
M. Synlett 2004, 119–121; (c) Singh, V.; Kanojiya, S.;
Batra, S. Tetrahedron 2006, 62, 10100–10110; (d) Knight,
D. W.; Sharland, C. M. Synlett 2003, 2258–2260; (e)
Magnus, N. A.; Staszak, M. A.; Udodong, U. E.; Wepsiec,
J. P. Org. Proc. Res. Dev. 2006, 10, 899–904; (f) Zen, S.;
Harada, K. Chem. Pharm. Bull. 1982, 30, 366–369; (g)
Compound 4a: 54%; white solid, 178–180 °C; IR (film)
3259, 1674, 1616, 1468, 1257 cmꢀ1 1H NMR (CDCl3,
;
300 MHz) d 2.34 (s, 3H), 7.33 (d, J = 2.7 Hz, 1H), 7.46–7.55