Communication
ChemComm
43, 1764–1766; (d) G. K. Friestad and A. K. Mathies, Tetrahedron,
2007, 63, 2541–2569; (e) S. J. Connon, Angew. Chem., Int. Ed., 2008,
47, 1176–1178; ( f ) P. Merino, E. Marques-Lopez, T. Tejero and
R. P. Herrera, Tetrahedron, 2009, 65, 1219–1234; (g) J. Martens,
ChemCatChem, 2010, 2, 379–381; (h) J. Wang, X. Liu and X. Feng,
Chem. Rev., 2011, 111, 6947–6983; (i) N. Kurono and T. Ohkuma, ACS
Catal., 2016, 6, 989–1023.
5 (a) J. Wang, W. Li, Y. Liu, Y. Chu, L. Lin, X. Liu and X. Feng, Org.
Lett., 2010, 12, 1280–1283; (b) B. A. Provencher, K. J. Bartelson,
Y. Liu, B. M. Foxman and L. Deng, Angew. Chem., Int. Ed., 2011, 50,
10565–10569; (c) Y.-F. Wang, W. Zeng, M. Sohail, J. Guo, S. Wu and
F.-X. Chen, Eur. J. Org. Chem., 2013, 4624–4633; (d) A. Falk, A.-L.
version of the cyano-borrowing reaction and only the racemic
product 37 was obtained.
In conclusion, we have developed a titanium-catalyzed direct
amination of commercially available cyanohydrins via a novel
cyano-borrowing strategy. Various types of aromatic amines,
aliphatic amines and sulfonyl amide were tolerated in this cyano-
borrowing reaction. This titanium-catalyzed cyano-borrowing
features broad substrate scope, excellent functional group tolerance,
and mild and convenient operational advantages for the high-
yielding synthesis of various valuable a-aminonitriles. Quaternary
centers containing amines could be obtained by the amination
of tertiary alcohols (ketone cyanohydrins). Moreover, a titanium
catalyst of quinine and (S)-BINOL was used for an enantio-
selective amination of racemic cyanohydrins with amines and
moderate to high ee’s were obtained. Further studies on the
cyano-borrowing reaction are in progress in our research lab
and will be reported in due course.
¨
Goderz and H.-G. Schmalz, Angew. Chem., Int. Ed., 2013, 52,
1576–1580; (e) S. Arai, Y. Amako, X. Yang and A. Nishida, Angew.
Chem., Int. Ed., 2013, 52, 8147–8150; ( f ) S. Arai, H. Hori, Y. Amako
and A. Nishida, Chem. Commun., 2015, 51, 7493–7496; (g) F. Ye,
J. Chen and T. Ritter, J. Am. Chem. Soc., 2017, 139, 7184–7187.
6 Q.-H. Li, Z.-F. Li, J. Tao, W.-F. Li, L.-Q. Ren, Q. Li, Y.-G. Peng and
T.-L. Liu, Org. Lett., 2019, 21, 8429–8433.
7 Z.-F. Li, Q. Li, L.-Q. Ren, Q.-H. Li, Y.-G. Peng and T.-L. Liu, Chem.
Sci., 2019, 10, 5787–5792.
8 (a) E. D. Hughes, C. K. Ingold, R. J. L. Martin and D. F. Meigh,
Nature, 1950, 166, 679–680; (b) E. Emer, R. Sinisi, M. G. Capdevila,
D. Petruzziello, F. De Vincentiis and P. G. Cozzi, Eur. J. Org. Chem.,
2011, 647–666; (c) S. V. Pronin, C. A. Reiher and R. A. Shenvi, Nature,
2013, 501, 195; (d) P. H. Huy, S. Motsch and S. M. Kappler, Angew.
Chem., Int. Ed., 2016, 55, 10145–10149; (e) S. Motsch, C. Schu¨tz and
P. H. Huy, Eur. J. Org. Chem., 2018, 4541–4547; ( f ) J. Chen, J.-H. Lin
and J.-C. Xiao, Chem. Commun., 2018, 54, 7034–7037.
9 (a) M. H. S. A. Hamid, P. A. Slatford and J. M. J. Williams, Adv. Synth.
Catal., 2007, 349, 1555–1575; (b) T. D. Nixon, M. K. Whittlesey and
J. M. J. Williams, Dalton Trans., 2009, 753–762, DOI: 10.1039/
B813383B; (c) G. E. Dobereiner and R. H. Crabtree, Chem. Rev.,
We are grateful for the financial support provided by National
Natural Science Foundation of China (21801209 and 21801210),
the Fundamental Research Funds for the Central Universities
(SWU118117, XDJK2018C044, SWU118028 and XDJK2019AA003)
and Venture & Innovation Support Program for Chongqing Over-
seas Returnees (cx2018085).
Conflicts of interest
´
2010, 110, 681–703; (d) G. Guillena, D. J. Ramon and M. Yus, Chem.
Rev., 2010, 110, 1611–1641; (e) A. J. A. Watson and J. M. J. Williams,
There are no conflicts to declare.
¨
Science, 2010, 329, 635–636; ( f ) S. Bahn, S. Imm, L. Neubert,
M. Zhang, H. Neumann and M. Beller, ChemCatChem, 2011, 3,
1853–1864; (g) C. Gunanathan and D. Milstein, Science, 2013,
341, 1229712; (h) S. Pan and T. Shibata, ACS Catal., 2013, 3,
704–712; (i) Q. Yang, Q. Wang and Z. Yu, Chem. Soc. Rev., 2015, 44,
2305–2329; ( j) A. Quintard and J. Rodriguez, Chem. Commun., 2016,
52, 10456–10473; (k) A. Corma, J. Navas and M. J. Sabater, Chem. Rev.,
2018, 118, 1410–1459; (l) T. Irrgang and R. Kempe, Chem. Rev., 2019,
119, 2524–2549; (m) B. G. Reed-Berendt, K. Polidano and L. C. Morrill,
Org. Biomol. Chem., 2019, 17, 1595–1607.
Notes and references
1 V. V. Kouznetsov and C. E. P. Galvis, Tetrahedron, 2018, 74, 773–810.
2 (a) G. Stork, Pure Appl. Chem., 1989, 61, 439–442; (b) P. L. Feldman and
M. F. Brackeen, J. Org. Chem., 1990, 55, 4207–4209; (c) P. L. Feldman,
M. K. James, M. F. Brackeen, J. M. Bilotta, S. V. Schuster, A. P. Lahey,
M. W. Lutz, M. R. Johnson and H. J. Leighton, J. Med. Chem., 1991, 34,
2202–2206; (d) L. Wang, J. Shen, Y. Tang, Y. Chen, W. Wang, Z. Cai and
Z. Du, Org. Process Res. Dev., 2007, 11, 487–489; (e) F.-G. Zhang, X.-Y. Zhu,
S. Li, J. Nie and J.-A. Ma, Chem. Commun., 2012, 48, 11552–11554.
3 D. Enders and J. P. Shilvock, Chem. Soc. Rev., 2000, 29, 359–373.
10 (a) Y. Hamachi, M. Katano, Y. Ogiwara and N. Sakai, Org. Lett., 2016,
´˜
18, 1634–1637; (b) C. Cativiela and M. Ordonez, Tetrahedron: Asym-
metry, 2009, 20, 1–63.
4 (a) H. Kunz, in Stereoselective Synthesis, ed. G. Helmchen, R. W. 11 (a) J. Wang, X. Hu, J. Jiang, S. Gou, X. Huang, X. Liu and X. Feng,
Hoffmann, J. Mulzer and E. Schaumann, Georg Thieme Verlag,
Stuttgart, 1995, vol. E21b, pp. 1931–1952; (b) H. Groeger, Chem.
Rev., 2003, 103, 2795–2827; (c) C. Spino, Angew. Chem., Int. Ed., 2004,
Angew. Chem., Int. Ed., 2007, 46, 8468–8470; (b) J. Wang, W. Wang,
W. Li, X. Hu, K. Shen, C. Tan, X. Liu and X. Feng, Chem. – Eur. J.,
2009, 15, 11642–11659.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2019