A R T I C L E S
Justin Thomas et al.
form a charge separated state. In such a system, the donor fulfills
two roles: energy harvester and electron donor. It is easy to
imagine that dendrimers are also interesting scaffolds for
photoinduced charge transfer from the core to the periphery.
As one moves from the core to the periphery of the dendrimers,
the number of units at least doubles with each layer. Therefore,
dendrimers could provide an entropic driving force for charge
separation from the core to the periphery. Guldi et al. reported
conjugated phenylene vinylene based dendrimers, in which an
energy level dependent energy transfer and/or electron transfer
was achieved.14a Qu et al. reported polypheneylene based
conjugated, rigid dendrimers in which intramolecular energy
transfer and electron transfer were observed.14b In this paper,
we report on a nonconjugated dendrimer, in which energy
transfer from the periphery to the core of the dendrimer is
followed by an electron-transfer quenching of the core excited
state. In conjugated dendrimers, the backbone serves as a vehicle
for the through-bond communication both for electron and
energy transfer. However, in nonconjugated dendrimers, the role
Figure 1. Cartoon of dendrimers for light harvesting.
harvesting antennae, in which efficient energy transfer from the
periphery to the core of the dendrimer has been observed.10
Studies have been carried out both with conjugated11 and
nonconjugated12 dendrimers.
There has also been considerable effort to design dendrimers
with favorable electron-transfer properties.13 Efforts to combine
these two steps, energy transfer and charge transfer, to mimic
both preliminary events of the photosynthetic apparatus, have
been more limited.14 This sequence of events is outlined in
Figure 1, where a donor molecule first transfers its energy to
the core acceptor, which then is able to oxidize the donor and
(8) (a) Newkome, G. R.; Moorefield, C. N.; Vo¨gtle, F. Dendrimers and
Dendrons: Concepts, Syntheses, Applications, 2nd ed.; Wiley-VCH: New
York, 2001. (b) Dendrimers and Other Dendritic Polymers; Fre´chet, J. M.
J., Tomlia, D. A., Eds.; John Wiley & Sons: New York, 2002. (c) Bosman,
A. W.; Janssen, H. M.; Meijer, E. W. Chem. ReV. 1999, 99, 1665. (d)
Fischer, M.; Vo¨gtle, F. Angew. Chem., Int. Ed. Engl. 1999, 38, 884. (e)
Fre´chet, J. M. J. Science 1994, 263, 1710. (f) Matthews, O. A.; Shipway,
A. N.; Stoddart, J. F. Prog. Polym. Sci. 1998, 23, 1. (g) Dendrimers II:
Architecture, Nanostructure and Supramolecular Chemistry; Vo¨gtle, F.,
Ed.; Springer: Berlin, 2000; Vol. 210. (h) Zeng, F.; Zimmerman, S. C.
Chem. ReV. 1997, 97, 1681.
(9) For methodologies that allow variations among every monomer unit of a
dendrimer, see: (a) Sivanandan, K.; Britto, S. S.; Thayumanavan, S. J.
Org. Chem. 2004, 69, 2937. (b) Vutukuri, D.; Sivnandan, K.; Thayumana-
van, S. Chem. Commun. 2003, 796. (c) Sivanandan, K.; Vutukuri, D.;
Thayumanavan, S. Org. Lett. 2002, 4, 3751.
(10) (a) Balzani, V.; Ceroni, P.; Maestri, M.; Vicinelli, V. Curr. Opin. Chem.
Biol. 2003, 7, 657. (b) Adronov, A.; Fre´chet, J. M. J. Chem. Commun.
2000, 1701. (c) Balzani, V.; Campagna, S.; Denti, G.; Juris, A.; Serroni,
S.; Venturi, M. Acc. Chem. Res. 1998, 31, 26. (d) Dirksen, A.; De Cola, L.
C. R. Chimie 2003, 6, 873. (e) Serroni, S.; Campagna, S.; Puntoriero, F.;
Loiseau, F.; Ricevuto, V.; Passalacqua, R.; Galletta, M. C. R. Chimie 2003,
6, 883. (f) Reference 4h.
(11) (a) Devadoss, C.; Bharathi, P.; Moore, J. S. J. Am. Chem. Soc. 1996, 118,
9635. (b) Shortreed, M. R.; Swallen, S. F.; Shi, Z.-Y.; Tan, W.; Xu, Z.;
Devadoss, C.; Moore, J. S.; Kopelman, R. J. Phys. Chem. B. 1997, 101,
6318. (c) Mellinger, J. S.; Pan, Y.; Kleiman, V. D.; Peng, Z.; Davis, B. L.;
McMorrow, D.; Lu, M. J. Am. Chem. Soc. 2002, 124, 12002. (d) Wang.
Y.; Ranasinghe, M. I.; Goodson, T., III. J. Am. Chem. Soc. 2003, 125,
9562. (e) Ranasinghe, M. I.; Varnavski, O. P.; Pawlas, J.; Hauck, S. I.;
Louie, J.; Hartwig, J.; Goodson, T., III. J. Am. Chem. Soc. 2002, 124, 6520.
(f) Gronheid, R.; Hofkens, J.; Ko¨hn, F.; Weil, T.; Reuther, E.; Mu¨llen, K.;
DeSchryver, F. C. J. Am. Chem. Soc. 2002, 124, 2418. (g) Weil, T.; Reuther,
E.; Beer, C.; Mu¨llen, K. Chem. Eur. J. 2004, 10, 1398. (h) Liu, D. J.; De
Feyter, S.; Cotlet, M.; Stefan, A.; Wiesler, U. M.; Herrmann, A.; Grebel-
Koehler, D.; Qu, J. Q.; Mullen, K.; De Schryver, F. C. Macromolecules
2003, 36, 5918. (i) Benites, M.d. R.; Johnson, T. E.; Weghorn, S.; Yu, L.;
Rao, P. D.; Diers, J. R.; Yang, S. I.; Kirmaier, C.; Bocian, D. F.; Holten,
D.; Lindsey, J. S. J. Mater. Chem. 2002, 12, 65.
(12) (a) Stewart, G. M.; Fox, M. A. J. Am. Chem. Soc. 1996, 118, 4354. (b)
Jiang, D. L.; Aida, T. J. Am. Chem. Soc. 1998, 120, 10895. (c) Adronov,
A.; Gilat, S. L.; Fre´chet, J. M. J.; Ohta, K.; Neuwahl, F. V. R.; Fleming,
G. R. J. Am. Chem. Soc. 2000, 122, 1175. (d) Neuwahl, F. V. R.; Righini,
R.; Adronov, A.; Malenfant, P. R. L.; Fre´chet, J. M. J. J. Phys. Chem. B
2001, 105, 1307. (e) Hahn, U.; Gorka, M.; Vo¨gtle, F.; Vicinelli, V.; Ceroni,
P.; Maestri, M.; Balzani, V. Angew. Chem., Int. Ed. 2002, 41, 3595. (f)
Choi, M.-S.; Aida, T.; Yamazaki, T.; Yamazki, I. Chem. Eur. J. 2002, 8,
2668.
(13) (a) Lor, M.; Thielemans, J.; Viaene, L.; Cotlet, M.; Hofkens, J.; Weil, T.;
Hampel, C. Mullen, K.; Verhoeven, J. W.; Van der Auweraer, M.; De
Schryver, F. C. J. Am. Chem. Soc. 2002, 124, 9918. (b) Capitosti, G. J.;
Cramer, S. J.; Rajesh, C. S.; Modarelli, D. A. Org. Lett. 2001, 3, 1645. (c)
Sadamoto, R.; Tomioka, N.; Aida, T. J. Am. Chem. Soc. 1996, 118, 3978.
(14) (a) Guldi, D. M.; Swartz, A.; Luo, C.; Go´mez, R.; Segura, J.; Mart´ın, N.
J. Am. Chem. Soc.2002, 124, 10875. (b) Qu, J.; Pschirer, N. G.; Liu, D.;
Stefan, A.; De Schryver, F. C.; Mu¨llen, K. Chem. Eur. J. 2004, 10, 528.
(c) For a study in which the branching units are partially oxidized to generate
a mixed valence compound, which was involved in an electron-transfer
quenching of the excited state of light absorber, see: Belser, P.; von
Zelewsky, A.; Frank, M.; Seel, M. Vo¨gtle, F.; De Cola, L.; Bargelletti, F.;
Balzani, V. J. Am. Chem. Soc. 1993, 115, 4076. (d) Choi, M.-S.; Aida, T.;
Luo, H.; Araki, Y.; Ito, O. Angew. Chem., Int. Ed. 2003, 42, 4060.
(5) (a) Sazanovich, I. V.; Kiramaier, C.; Hindin, E.; Yu, L.; Bocian, D. F.;
Lindsey, J. S.; Holten, D. J. Am. Chem. Soc. 2004, 126, 2664. (b) Tomizaki,
K.-y.; Yu, L.; Wei, L.; Bocian, D. F.; Lindsey, J. S. J. Org. Chem. 2003,
68, 8199. (c) Campagna, S.; Serroni, S.; Puntoriero, F.; Loiseau, F.; De
Cola, L.; Kleverlaan, C. J.; Becher, J.; Sorensen, A. P.; Hascoat, P.; Thorup,
N. Chem. Eur. J. 2002, 8, 4461. (d) Jullien, L.; Canceill, J.; Valeur, B.;
Bardez, E.; Lefe`vre, J.-P.; Lehn, J.-M.; Marchi-Artzner, V.; Pansu, R. J.
Am. Chem. Soc. 1996, 118, 5432. (e) Liddell, P. A.; Kodis, G.; Andreasson,
J.; De la Garza, L.; Bandyopadhyay, S.; Mitchell, R. H.; Moore, T. A.;
Moore, A. L.; Gust, D. J. Am. Chem. Soc. 2004, 126, 4803. (f) Kodis, G.;
Herrero, C.; Palacios, R.; Marno-Ochoa, E.; Gould, S.; De la Garza, L.;
Van Grondelle, R.; Gust, D.; Moore, T. A. Moore, A. L. J. Phys. Chem. B.
2004, 108, 414. (g) Bennett, I. M.; Farfano, H. M. V.; Bogan, F.; Primak,
A.; Liddell, P. A.; Otero, L.; Sereno, L.; Juana, J.; Moore, A. L.; Moore,
T. A.; Gust, D. Nature 2002, 420, 398. (h) Weiss, E. A.; Chemick, E. T.;
Wasielewski, M. R. J. Am. Chem. Soc. 2004, 126, 2326. (i) Gaimo, J. M.;
Gusev, A. V.; Wasielewski, M. R. J. Am. Chem. Soc. 2002, 124, 8530. (j)
Bell, T. D. M.; Ghiggino, K. P.; Jolliffe, K. A.; Ranasinghe, M. G.;
Langford, S. J.; Shephard, M. J.; Paddon-Row: M. N. J. Phys. Chem. A.
2002, 106, 10079. (k) Biemans, H. A. M.; Rowan, A. E.; Verhoeven, A.;
Vanoppen, P.; Latterini, L.; Foekema, J.; Schenning, A. P. H. J.; Meijer,
E. W.; de Schryver, F. C.; Nolte, R. J. M. J. Am. Chem. Soc. 1998, 120,
11054.
(6) (a) Belser, P.; von Zelewsky, A.; Frank, M.; Seel, C.; Vo¨gtle, F.; De Cola,
L.; Barigelletti, F.; Balzani, V. J. Am. Chem. Soc. 1993, 115, 4076. (b)
Balaban, T. S.; Goddard, R.; Linke-Schaetzel, M.; Lehn, J.-M. J. Am. Chem.
Soc. 2003, 125, 4233. (c) Balaban, T. S.; Eichhofer, A.; Lehn, J.-M. Chem.
Eur. J. 2000, 6, 4047. (d) Kercher, M.; Ko¨nig, B.; Zieg, H.; De Cola, L.
J. Am. Chem. Soc. 2002, 124, 11541. (e) Takahashi, R.; Kobuke, Y.; J.
Am. Chem. Soc. 2003, 125, 2372. (f) Anderson, S.; Anderson, H. L.; Bashall,
A.; McPartlin, M.; Sanders, J. K. M. Angew. Chem., Int. Ed. Engl. 1995,
34, 1096. (g) Drain, C. M.; Nifiatis, F.; Vasenko, A.; Batteas, J. D. Angew.
Chem., Int. Ed. 1998, 37, 2344. (h) Prodi, A.; Indelli, M. T.; Kleverlaan,
C. J.; Scandola, F.; Alessio, E.; Gianferrata, T.; Marzilli, L. G. Chem. Eur.
J. 1999, 5, 2668. (i) Sugou, K.; Sasaki, K.; Iwaki, T.; Kuroda, Y. J. Am.
Chem. Soc. 2002, 124, 1182.
(7) (a) Webber, S. E. Chem. ReV. 1990, 90, 1469. (b) Watkins, D. M.; Fox,
M. A. J. Am. Chem. Soc. 1994, 116, 6441. (c) Fox, H. H.; Fox, M. A.
Macromolecules 1995, 28, 4570. (d) Ng, D.; Guillet, J. E. Macromolecules
1982, 15, 724. (e) Ng, D.; Guillet, J. E. Macromolecules 1982, 15, 728. (f)
Jones, G., II.; Rahman, M. A. Chem. Phys. Lett. 1992, 200, 241. (g) Sein,
J.; Schultze, X.; Adronov, A.; Fre´chet, J. M. J. Macromolecules 2002, 35,
5396. (h) Peng, K. Y.; Chen, S. A.; Fann, W. S. J. Am. Chem. Soc. 2001,
123, 11388.
9
374 J. AM. CHEM. SOC. VOL. 127, NO. 1, 2005