LETTER
Enantioselective Synthesis of Renieramide
2811
(6) Renieramide: (a) Ciasullo, L.; Casapullo, A.; Cutignano, A.;
Bifulco, G.; Debitus, C.; Hooper, J.; Gomez-Paloma, L.;
Riccio, R. J. Nat. Prod. 2002, 65, 407. (b) Itokawa, H.;
Watanabe, K.; Kawaoto, S.; Inoue, T. Jpn. Kokai Tokkyo
Koho JP 63203671, 1988.
added. The mixture was stirred at r.t. for 18 h, then extracted
with CHCl3 (4 × 3 mL). The combined organics were
washed with 10% aq Na2CO3 (2 × 4 mL), dried (Na2SO4) and
concentrated under reduced pressure. The residue was
purified by chromatography on silica gel (CHCl3–MeOH,
50:1) to yield the orthogonally protected isodityrosine 12
(269 mg, 85%) as a pale yellow oil. Rf = 0.3 (CHCl3–MeOH,
25:1). [a]D +1 (c 0.9, CHCl3). IR (film): nmax = 3376, 2977,
2632, 1714, 1505 cm–1. 1H NMR (500 MHz, CDCl3): d =
7.34–7.23 (10 H, m, ArH), 7.13 (2 H, d, J = 8.0 Hz, ArH),
6.84 (1 H, s, CHPh2), 6.81 (2 H, d, J = 8.0 Hz, ArH), 6.76 (1
H, d, J = 8.0 Hz, ArH), 6.68 (1 H, d, J = 8.0 Hz, ArH), 6.65
(1 H, s, ArH), 4.97 (1 H, br d, J = 8.0 Hz, NH), 4.68–4.60 (1
H, m, CHN), 3.78 (3 H, s, OCH3), 3.64–3.56 (1 H, m, CHN),
3.04 (1 H, dd, J = 6.0, 14.0 Hz, CHCHaHb), 2.99–2.95 (2 H,
m, CHCHaHb, CHCHaHb), 2.82 (1 H, dd, J = 8.0, 14.0 Hz,
CHCHaHb), 1.44 [9 H, s, C(CH3)3], 1.40 [9 H, s, C(CH3)3].
13C NMR (125 MHz, CDCl3): d = 174.2 (C), 170.9 (C),
156.9 (C), 155.0 (C), 150.0 (C), 144.6 (C), 139.6 (C), 139.4
(C), 131.3 (C), 130.5 (CH), 128.6 (CH), 128.5 (CH), 128.2
(CH), 128.0 (CH), 127.5 (CH), 127.0 (CH), 125.7 (CH),
122.4 (CH), 116.9 (CH), 112.8 (CH), 81.3 (C), 80.0 (C), 78.0
(CH), 56.3 (CH), 56.0 (CH3), 54.5 (CH), 40.3 (CH2), 37.4
(CH2), 28.3 (CH3), 28.1 (CH3). MS (ES+): m/z (%) = 719
(28) [M + Na+], 697 (100) [M + H+], 641 (10) [M – t-Bu +
H+], 296 (68). HRMS: m/z calcd for C41H49N2O8 [M + H]+:
697.3489. Found: 697.3528.
(7) For leading references to the syntheses of K13, OF4949-I-IV
and the eurypamides see: (a) Ito, M.; Yamanaka, M.;
Kutsumura, N.; Nishiyama, S. Tetrahedron 2004, 60, 5623.
(b) Jackson, R. F. W.; Perez-Gonzalez, M. Chem. Commun.
2000, 2423. (c) Bigot, A.; Bois-Choussy, M.; Zhu, J.
Tetrahedron Lett. 2000, 41, 4573. (d) Janetka, J. W.; Rich,
D. H. J. Am. Chem. Soc. 1997, 119, 6488. (e) Pearson, A.
J.; Zhang, P. L.; Lee, K. J. Org. Chem. 1996, 61, 6581.
(f) Rao, A. V. R.; Gurjar, M. K.; Reddy, A. B.; Khare, V. B.
Tetrahedron Lett. 1993, 34, 1657. (g) Boger, D. L.;
Yohannes, D. J. Org. Chem. 1990, 55, 6000. (h) Evans, D.
A.; Ellman, J. A. J. Am. Chem. Soc. 1989, 111, 1063.
(i) Nishiyama, S.; Suzuki, Y.; Yamamura, S. Tetrahedron
Lett. 1989, 30, 379. (j) Schmidt, U.; Weller, D.; Holder, A.;
Lieberknecht, A. Tetrahedron Lett. 1988, 29, 3227.
(8) Lygo, B. Tetrahedron Lett. 1999, 40, 1389.
(9) (a) Lygo, B.; Allbutt, B. Synlett 2004, 326. (b) Lygo, B.;
Allbutt, B.; James, S. R. Tetrahedron Lett. 2003, 44, 5629.
(10) The enantioselectivity of this alkylation was determined by
chiral-phase HPLC comparison of the product 10 with
racemic material generated using n-Bu4NBr as the PTC. Use
of catalyst 8 led to similar regioselectivity and yield, but
gave 10 with only 50% ee.
(15) For an alternative approach to orthogonally protected (S,S)-
isodityrosines see: Jorgensen, K. B.; Gautun, O. R.
(11) Reinholtz, E.; Becker, A.; Hagenbruch, B.; Schäfer, S.;
Schmitt, A. Synthesis 1990, 1069.
Tetrahedron 1999, 55, 10527.
(12) (a) Lygo, B.; Andrews, B. I.; Slack, D. Tetrahedron Lett.
2003, 44, 9039. (b) Lygo, B.; Andrews, B. I. Tetrahedron
Lett. 2003, 44, 4499. (c) Lygo, B.; Humphreys, L. D.
Tetrahedron Lett. 2002, 43, 6677. (d) Lygo, B.; Andrews,
B. I.; Crosby, J.; Peterson, J. A. Tetrahedron Lett. 2002, 43,
8015. (e) Lygo, B.; Crosby, J.; Lowdon, T. R.; Wainwright,
P. G. Tetrahedron 2001, 57, 2391. (f) Lygo, B.; Crosby, J.;
Lowdon, T. R.; Peterson, J. A.; Wainwright, P. G.
Tetrahedron 2001, 57, 2403. (g) Lygo, B.; Crosby, J.;
Peterson, J. A. Tetrahedron 2001, 57, 6447. (h) Lygo, B.;
Wainwright, P. G. Tetrahedron Lett. 1997, 38, 8595.
(13) For application of a related alkylation to the synthesis of the
dityrosine fragment of RP66453 see: Boisnard, S.;
Carbonnelle, A.-C.; Zhu, J. Org. Lett. 2001, 3, 2061.
(14) Representative Alkylation–Hydrolysis Procedure
(Preparation of 12): A solution of glycine imine 4a (161
mg, 0.54 mmol) in toluene (4 mL) was placed under a
nitrogen atmosphere. Iodide 11 (312 mg, 0.45 mmol),
catalyst 8 (36 mg 10 mol%) and 9 M aq KOH (400 mL) were
added sequentially, and the resulting mixture stirred at r.t.
for 18 h. The toluene layer was then separated and the
aqueous layer extracted with EtOAc (3 × 2 mL). The
combined organics were dried (MgSO4), and concentrated
under reduced pressure. The residue was dissolved in Et2O
(10 mL), filtered (to remove catalyst), and again
(16) Kiso, Y.; Nakamura, S.; Ito, K.; Ukawa, K.; Kitagawa, K. J.
Chem. Soc., Chem. Commun. 1979, 971.
(17) Selected data for synthetic renieramide (2): Mp 185–195 °C
(decomp). [a]D –32 (c 0.1, MeOH) (lit. [a]D –30 (c 0.1,
MeOH).6 1H NMR (500 MHz, CD3OD): d = 7.42 (1 H, dd,
J = 2.0, 8.0 Hz, ArH), 7.20 (1 H, dd, J = 2.0, 8.0 Hz, ArH),
7.01 (1 H, dd, J = 2.0, 8.0 Hz, ArH), 6.86 (1 H, dd, J = 2.5,
8.0 Hz, ArH), 6.81 (1 H, d, J = 8.0 Hz, ArH), 6.65 (1 H, dd,
J = 2.0, 8.0 Hz, ArH), 5.98 (1 H, d, J = 2.0 Hz, ArH), 4.52 (1
H, dd, J = 3.5, 11.5 Hz, CHN), 4.48 (1 H, dd, J = 3.5, 12.5
Hz, CHN), 3.97 (1 H, dd, J = 2.0, 6.0 Hz, CHN), 3.38 (1 H,
dd, J = 3.5, 13.0 Hz, CHCHaHb), 3.15 (1 H, dd, J = 2.0, 15.0
Hz, CHCHaHb), 2.91 (1 H, dd, J = 6.0, 15.0 Hz, CHCHaHb),
2.60 (1 H, app. t, J = 12.5 Hz, CHCHaHb) 1.70–1.62 [2 H, m,
CH2CH(CH3)2], 1.61–1.51 [1 H, m, CH2CH(CH3)2], 0.95 (3
H, d, J = 6.0 Hz, CH3), 0.93 (3 H, d, J = 6.0 Hz, CH3). 13
C
NMR (125 MHz, CD3OD): d = 178.1 (C), 172.7 (C), 169.1
(C), 154.6 (C), 149.8 (C), 147.2 (C), 137.1 (C), 133.0 (CH),
131.7 (CH), 125.0 (2 × CH), 123.1 (CH), 122.7 (CH), 117.2
(CH), 116.9 (CH), 58.1 (CH), 53.7 (CH), 52.1 (CH), 43.6
(CH2), 40.9 (CH2), 37.4 (CH2), 26.0 (CH), 23.8 (CH3), 21.6
(CH3).
(18) There is a typographical error in the 13C NMR (CD3OD)
reported for natural renieramide,6 the CH2 carbon of the L-
DOPA fragment occurs at d = 37.7 ppm (not 43.6). We thank
Prof. R. Riccio and Dr. A. Casapullo for kindly providing
this information.
concentrated under reduced pressure. The residue was then
dissolved in THF (5 mL) and 15% aq citric acid (1.5 mL)
Synlett 2004, No. 15, 2809–2811 © Thieme Stuttgart · New York