η2-Pt-Complexed Acetylenes
Organometallics, Vol. 24, No. 3, 2005 437
Table 4. Crystallographic Data for 1b‚2CH2Cl2, 2‚CHCl3‚C6H14, and 4a‚4CH2Cl2
1b‚2CH2Cl2
2‚CHCl3‚C6H14
4a‚4CH2Cl2
empirical formula
formula wt
temp (K)
cryst syst
space group
a (Å)
C58H39Cl4F10P2Pt2
1519.81
C64H51Cl3F10OP2Pt2
1584.52
C110H72Cl8F20P4Pt4
2961.52
173(1)
123(1)
123(1)
triclinic
P1h
triclinic
P1h
triclinic
P1h
13.5460(3)
14.0020(2)
16.1080(4)
74.1420(10)
72.5370(10)
69.9710(10)
2688.15(11)
2
13.4490(2)
14.7380(2)
17.1680(3)
68.6360(10)
80.4930(10)
69.8830(10)
2972.63(8)
2
11.2170(2)
12.9170(2)
18.3920(4)
85.0610(10)
85.29990(10)
89.6960(10)
2645.99(8)
1
b (Å)
c (Å)
R (deg)
â (deg)
γ (deg)
V (Å3)
Z
Dcalcd (Mg/m3)
1.878
1.770
1.859
abs coeff (mm-1
F(000)
)
5.531
4.963
5.616
1462
1540
1420
cryst size (mm)
0.25 × 0.15 × 0.10
4.10-25.03
9436/0/403
0.961
0.25 × 0.25 × 0.10
1.27-25.68
11 283/8/770
1.074
0.35 × 0.25 × 0.15
1.11-25.68
10 027/5/668
1.075
θ range for data collecn (deg)
no. of data/restrains/params
goodness of fit on F2
final R indices (I > 2σ(I))
R indices (all data)
R1 ) 0.0557, wR2 ) 0.1126
R1 ) 0.1009, wR2 ) 0.1273
2.446 and -1.949
R1 ) 0.0387, wR2 ) 0.1027
R1 ) 0.0598, wR2 ) 0.1269
3.231 and -3.064
R1 ) 0.0430, wR2 ) 0.1106
R1 ) 0.0594, wR2 ) 0.1247
2.470 and -3.009
largest diff peak and hole (e Å-3
)
evaporated to dryness. Addition of cold i-PrOH (∼5 mL) to the
solid residue yielded 2 as an orange solid. Yield: 89%.
CH2Cl2 solution (20 mL) of [{trans-PtH(PPh3)2}2{µ-1κCR:2κCR′-
(1,4-CtC)2C6H4}] (0.20 g, 0.13 mmol), and the mixture was
stirred at room temperature for 10 min. The resulting orange
solution was evaporated to dryness, and the residue was
treated with hexane, yielding 4a as an orange solid. Yield:
95%. Anal. Calcd for C106F20H66P4Pt4: C, 48.52; H, 2.54.
Found: C, 48.74; H, 1.96. MS FAB(+): m/z 2626 [M + 3H]+,
1%; 1056 [Pt2H(C6F5)2(PPh3)2]+, 8%; 905 [Pt4H(C10H4)]+, 15%;
719 [Pt(PPh3)2]+, 96%; 604 [Pt2(PPh)2 - 2H]+, 54%; 528 [Pt-
(C6F5)2 - H]+, 31%; 455 [Pt(PPh3) - 2H]+, 71%; 378 [Pt(PPh2)
- 2H]+, 100%. IR (cm-1): ν(CtC) 2019 (w); ν(C6F5)X-sens 796
Method B. The synthesis of complex 2 starting from [trans-
PtH(CtCPh)(PPh3)2], as well as its analytical and spectro-
scopic data (but 13C{1H} NMR), has been previously reported
by us.49 13C NMR (CDCl3, δ (J, Hz)): 174.0 (s, CO); 148∼144
(m, C6F5); 137.9 (s, tentatively assigned to dCH); 134.8 (d, o-C,
2
2JC-P ≈ 10, PPh3); 134.3 (d, o-C, JC-P ≈ 12.7, PPh3); 132.4
(dm, i-C, 1JC-P ) 68, PPh3); 131.1 (s, p-C, PPh3); 130.5 (s, p-C,
PPh3); 129.2, (s, o-C, C6H5); 128.3 (m, overlapping of two
doublets, m-C, PPh3); 128.1 (s, m-C, C6H5); 125.8 (s, p-C, C6H5).
Synthesis of [{cis,cis-(CO)(C6F5)2PtPt(PPh3)2}2{µ4-1KCR:
2KCR:3KCR′:4KCR′-(1,4-CdCH)2C6H4}] (3). Method A. Com-
plex [{Pt(PPh3)2}2{µ-η2:η2-(1,4-HCtC)2C6H4}] (0.12 g, 0.08
mmol) was treated with 0.10 g (0.16 mmol) of [cis-Pt(C6F5)2-
(CO)(THF)] in CH2Cl2 (10 mL). The resulting red solution was
stirred for 3 min and then concentrated under reduced
pressure to small volume (1 mL). By addition of n-hexane (∼15
mL) and cooling for ∼12 h (-25 °C), complex 3 precipitates as
a red solid. Yield: 80%.
Method B. A solution of [{trans-PtH(PPh3)2}2{µ-1κCR:2κCR′-
(1,4-CtC)2C6H4}] (0.10 g, 0.064 mmol) in CH2Cl2 (∼15 mL)
was treated with 0.08 g (0.128 mmol) of [cis-Pt(C6F5)2(CO)-
(THF)], and the mixture was stirred at room temperature for
24 h. Then, the solvent was removed under reduced pressure,
and the residue was treated with hexane. The solid was filtered
and recrystallized from CH2Cl2/hexane. Yield: 20%.
1
(m br). H NMR (CDCl3, δ (J, Hz)): 7.54, 7.25 (m, 60 H, Ph,
PPh3); 6.59 (s, 4H, C6H4); -7.54 (dd, 2JP(1)-H ) 73.7, 2JP(2)-H
)
1
1
14.0, JPt(1)-H ≈ 560, JPt(2)-H ≈ 515, 2 Pt-µ-H-Pt). 19F NMR
(CDCl3, δ): -116.19 (dm, 3JPt-F ≈ 290, 4o-F); -118.49 (d, 3JPt-F
≈ 350, 4o-F); -162.57 (m, 2p-F); -163.89 (m, 4m-F); -164.63
(t, 2p-F); -165.30 (m, 4m-F). 31P NMR (CDCl3, δ (J, Hz)): 28.8
1
2
(s, JPt(1)-P(1) ) 3826, JPt(2)-P(1) ) 101, P(1) trans to hydride);
11.1 (s, 1JPt(2)-P(2) ) 3587, P(2) trans to CtC). 13C NMR (CDCl3,
2
δ (J, Hz)): 148-134 (C6F5); 134.1 (d, JC-P ) 11.8, o-C, Ph,
PPh3); 133.8 (d, 2JC-P ) 11.1, o-C, Ph, PPh3); 130.9 (d, 4JC-P
)
2.4, p-C, Ph, PPh3); 130.8 (d, 4JC-P ) 2.2, p-C, Ph, PPh3); 130.7
(d, 1JC-P ) 60.8, i-C, Ph, PPh3); 130.2 (s br, C2), 129.6 (d, 1JC-P
) 65.0, 2JPt-C ) 36.9, ipso-C, Ph, PPh3); 128.1 (d, 3JC-P ) 7.6,
3
m-C, Ph, PPh3); 127.9 (d, JC-P ) 7.6, m-C, Ph, PPh3); 124.9
4
3
2
(d, JC-P ) 3.6, JPt-C ) 17.6, C1); 108.6 (d, JC-P ) 21.1, CR).
Synthesis of [{cis,cis-(PPh3)2Pt(µ-H)Pt(C6F5)2}2{µ-1KCr:
4KCr′:η2:η2-(1,4-CtC)2C6H4}] (4b). A 0.15 g portion (0.22
mmol) of [cis-Pt(C6F5)2(thf)2] was added to a CH2Cl2 solution
(10 mL) of [{Pt(PPh3)2}2{µ-η2:η2-(1,4-HCtC)2C6H4}] (0.18 g,
0.11 mmol), and the mixture was stirred at room temperature
for 5 min. The resulting orange solution was evaporated to
dryness, and the residue was treated with cold EtOH, giving
4b as an orange solid. Yield: 92%. Anal. Calcd for C106F20H66P4-
Pt4: C, 48.52; H, 2.54. Found: C, 48.79; H, 2.68. MS ES(+):
m/z 885 [Pt(C6F5)(PPh3)2] - H]+, 12%; 719 [Pt(PPh3)2]+, 100%.
IR (cm-1): ν(CtC) 2018 (w); ν(C6F5)X-sens 804 (m), 794 (m). 1H
NMR (CDCl3, δ (J, Hz)): 7.35, 7.13 (m, 60H, Ph, PPh3); 6.15
Data for 3. Anal. Calcd for C108F20H66O2P4Pt: C, 48.40; H,
2.48. Found: C, 47.99; H, 2.16. MS ES(+): m/z 1303 [Pt2-
(C6F5)2(CO)(CdCH)(PPh3)2 + H]+, 8%; 721 [Pt(PPh3)2 + 2H]+,
95%. IR (cm-1): ν(CÃ) 2088 (s); ν(C6F5)X-sens 796 (m), 778 (m).
1H NMR (CDCl3, δ (J, Hz)): 7.29 (m), 7.14 (m) (64 H, PPh3
and C6H4); 5.59 (dd, 2H, 4JP-H ) 27.5 and 7.6; dCH). 19F NMR
(CDCl3, δ): ≈-109 (br, 2o-F); -113.7 (dm, 3JPt-F ≈ 266, 4o-F,
and a broad resonance in the base due to 2o-F); the two broad
resonances are assigned to o-F of C6F5 rings trans to Pt(1);
-159.8 (t, 2p-F); -162.3 (t, 2p-F); -163.6 (m, 4m-F); -164.7
(v br), -165.9 (v br) (4m-F). 31P NMR (CDCl3, δ (J, Hz)): 36.1
(d, 1JPt(1)-P(A) ) 5538, 2JPt(2)-P(A) ≈ 366, 2JP-P ) 14.7, P(A)); 30.8
(d, 1JPt(1)-P(X) ) 2588, 2JP-P ) 14.7, P(X)). 13C NMR (CDCl3, δ):
150∼140.3 (m, C6F5); 134.7 (m, o-C, PPh3); 134.3 (m, o-C,
PPh3); 132.4 (dm, i-C, PPh3); 131.1 (m, p-C, PPh3); 130.4 (m,
p-C, PPh3); 129.3, (s, C6H4); 128.4 (m, m-C, PPh3).
2
2
(s, 4H, C6H4); -7.19 (dd, JP(trans)-H ) 92.2, JP(cis)-H ) 10.8,
1JPt(1)-H ≈ 620, 1JPt(2)-H ) 450, 2 Pt-µ-H-Pt). 19F NMR (CDCl3,
δ (J, Hz)): -116.74 (d, 3JPt-F ≈ 408, 4o-F); -118.46 (dm, 3JPt-F
≈ 460, 4o-F); -163.10 (t, 2p-F); -164.33 (t, 2p-F); -164.91 (m,
4m-F); -165.17 (m, 4m-F). 31P NMR (CDCl3, δ (J, Hz)): 12.6
Synthesis of [{trans-(PPh3)(C6F5)Pt(µ-H)Pt(C6F5)(P-
Ph3)}2{µ-1KCr:4KCr′:η2:η2-(1,4-CtC)2C6H4}] (4a). A 0.17 g
portion (0.26 mmol) of [cis-Pt(C6F5)2(thf)2] was added to a
1
2
2
(d, JPt(1)-P(1) ) 3372, JPt(2)-P(1) ) 55, JP-P ) 22.5, P(1) trans
to hydride); 11.1 (d, 1JPt(1)-P(2) ≈ 2690, 2JPt(2)-P(2) ) 40, 2JP-P
)