Article
Journal of Medicinal Chemistry, 2010, Vol. 53, No. 23 8239
removed under reduced pressure. The crude material was purified
by SCX cartridge, affording the title compound in 52% yield. MS
(ES) m/z:398 [MHþ]. C25H27N5 requires 397. 1H NMR(300 MHz,
CDCl3) δ (ppm): 8.35 (d, 1H), 7.90 (d, 1H), 7.70 (d, 1H), 7.70 (s,
1H), 7.65 (t, 1H), 7.60 (t, 1H), 7.50 (dd, 1H), 7.35 (t, 1H), 7.25 (d,
1H), 7.15 (d, 1H), 7.05 (d, 1H), 6.45 (t, 1H), 3.20 (m, 4H), 3.0-2.7
(m, 8), 2.70 (s, 3H).
Nelson, D. L.; Wainscott, D. B.; Ahmad, L. J.; Shaw, J.; Threlkeld, P. G.;
Wong, D. T. Advances toward new antidepressants beyond SSRIs:
1-aryloxy-3-piperidinylpropan-2-ols with dual 5-HT1A receptor antag-
onism/SSRI activities. Part 3. Bioorg. Med. Chem. Lett. 2003, 13,
3939–3942. (h) Takeuchi, K.; Kohn, T. J.; Honigschmidt, N. A.; Rocco,
V. P.; Spinazze, P. G.; Hemrick-Luecke, S. K.; Thompson, L. K.; Evans,
D. C.; Rasmussen, K.; Koger, D.; Lodge, D.; Martin, L. J.; Shaw, J.;
Threlkeld, P. G.; Wong, D. T. Advances toward new antidepressants
beyond SSRIs: 1-aryloxy-3-piperidinylpropan-2-ols with dual 5-HT1A
receptor antagonism/SSRI activities. Part 5. Bioorg. Med. Chem. Lett.
2006, 1, 2347–2351. (i) Rocco, V. P.; Spinazze, P. G.; Kohn, T. J.;
Honigschmidt, N. A.; Nelson, D. L.; Bradley Wainscott, D.; Ahmad,
L. J.; Shaw, J.; Threlkeld, P. G.; Wong, D. T.; Takeuchi, K. Advances
toward new antidepressants beyond SSRIs: 1-aryloxy-3-piperidinyl-
propan-2-ols with dual 5-HT1A receptor antagonism/SSRI activities.
Part 4. Bioorg. Med. Chem. Lett. 2004, 14, 2653–2656. (j) Atkinson,
P. J.; Bromidge, S. M.; Duxon, M. S.; Gaster, L. M.; Hadley, M. S.;
Hammond, B.; Johnson, C. N.; Middlemiss, D. N.; North, S. E.; Price,
G. W.; Rami, H. K.; Riley, G. J.; Scott, C. M.; Shaw, T. E.; Starr, K. R.;
Stemp, G.; Thewlis, K. M.; Thomas, D. R.; Thompson, M.; Vong,
A. K. K.; Watson, J. M. 3,4-Dihydro-2H-benzoxazinones are 5-HT1A
receptor antagonists with potent 5-HT reuptake inhibitory activity.
Bioorg. Med. Chem. Lett. 2005, 15, 737–741. (k) Lovell, P. J.; Blaney,
F. E.; Goodacre, C. J.; Scott, C. M.; Smith, P. W.; Starr, K. R.; Thewlis,
K. M.; Vong, A. K. K.; Ward, S. E.; Watson, J. M. 3,4-Dihydro-2H-
benzoxazinones as dual-acting 5-HT1A receptor antagonists and serotonin
reuptake inhibitors. Bioorg. Med. Chem. Lett. 2007, 17, 1033–1036.
(l) Moltzen, E. K.; Mikkelsen, I.; Bjornholm, B.; Brennum, L. T.; Hogg,
S.; Sanchez, C. In vitro profile of LU 36-274: a compound with
combined 5-HTT/5-HT1A activity and putative fast onset of antidepres-
sant action. Soc. Neurosci. Abstr. 2003, 29, 958.16. (m) Taber, M. T.;
Torrente, J. R.; Palmer, J.; Poss, M. A.; Tortolani, D. R.; Yevich, J. P.;
Stark, A. D.; Mattson, R. J. Pharmacological characterization of BMS-
296859, a novel serotonin reuptake inhibitor and serotonin 5-HT1A
receptor antagonist. Soc. Neurosci. Abstr. 2003, 29, 958.15.
Acknowledgment. We thank Dr. Carla Marchiorro and
members of the Analytical Chemistry Department, Verona,
for support in the analytical characterization of the com-
pounds described. WealsothankLaurie GordonandGraham
Riley of Molecular Discovery Research and Matthew Hill of
the Neurosciences CEDD, Harlow, for support in the in vitro
characterization of the compounds described.
References
(1) (a) Hirschfeld, R. M. A. History and evolution of the monoamine
hypothesis of depression. J. Clin. Psychiatry 2000, 61, 4–6. (b)
Lucki, I. The spectrum of behaviors influenced by serotonin. Biol.
Psychiatry 1998, 44, 151–162. (c) Naughton, M.; Mulrooney, J. B.;
Leonard, B. E. A review of the role of serotonin receptors in psychiatric
disorders. Human Psychopharmacol. 2000, 15, 397–415.
(2) (a) Wood, M. D.; Thomas, D. R.; Watson, J. M. Therapeutic
potential of serotonin antagonists in depressive disorders. Exp.
Opin. Invest. Drugs 2002, 11, 457–467. (b) Blier, P.; De Montigny, C.
Serotonin and drug-induced therapeutic responses in major depression,
obsessive-compulsive and panic disorders. Neuropsychopharmacol-
ogy 1999, 21, 91S–98S.
(3) Duxon, M. S.; Starr, K. R.; Upton, N. Latency to paroxetine-
induced anxiolysis in the rat is reduced by co-administration of the
5-HT1A receptor antagonist WAY100635. Br. J. Pharmacol. 2000,
130, 1713–1719.
(6) Roberts, C.; Price, G. W.; Middlemiss, D. N. Ligands for the
investigation of 5-HT autoreceptor function. Brain Res. Bull. 2001,
56, 463–469.
(7) Davidson, C.; Stamford, J. A. Evidence that 5-hydroxytryptamine
release in rat dorsal raphe nucleus is controlled by 5-HT1A, 5-HT1B
and 5-HT1D autoreceptors. Br. J. Pharmacol. 1995, 114, 1107–1109.
(8) (a) Davidson, C.; Stamford, J. A. Serotonin efflux in the rat ventral
lateral geniculate nucleus assessed by fast cyclic voltammetry is
modulated by 5-HT1B and 5-HT1D autoreceptors. Neuropharma-
cology 1996, 35, 1627–1634. (b) Roberts, C.; Price, G. W.; Gaster, L.;
Jones, B. J.; Middlemiss, D. N.; Routledge, C. Importance of h5-HT1B
receptor selectivity for 5-HT terminal autoreceptor activity: an in vivo
microdialysis study in the freely-moving guinea pig. Neuropharmacol-
ogy 1997, 36, 549–557. (c) Roberts, C.; Price, G. W.; Jones, B. J. The
role of 5-HT1B/1D receptors in the modulation of 5-hydroxytryptamine
levels in the frontal cortex of the conscious guinea pig. Eur. J.
Pharmacol. 1997, 326, 23–30.
(9) (a) Hughes, Z. A.; Dawson, L. A. Differential autoreceptor control
of extracellular 5-HT in guinea pig and rat: species and regional
differences. Psychopharmacology 2004, 172, 87–93. (b) Stenfors, C.;
Magnusson, T.; Larsson, L. G.; Yu, H.; Hallbus, M.; Magnusson, O.;
Ross, S. B. Synergism between 5-HT1B/1D and 5-HT1A receptor
antagonists on turnover and release of 5-HT in guinea-pig brain in vivo.
Naunyn-Schmiedeberg’s Arch. Pharmacol. 1999, 359, 110–116.
(10) Kling, A.; Lange, U. E. W.; Mack, H.; Bakker, M. H. M.; Drescher,
K. U.; Hornberger, W.; Hutchins, C. W.; Moeller, A.; Mueller, R.;
Schmidt, M.; Unger, L.; Wicke, K.; Schellhaas, K.; Steiner, G.
Synthesis and SAR of highly potent dual 5-HT1A and 5-HT1B
antagonists as potential antidepressant drugs. Bioorg. Med. Chem.
Lett. 2005, 15, 5567–5573.
(11) Ward, S. E.; Johnson, C. N.; Lovell, P. J.; Scott, C. M.; Smith,
P. W.; Stemp, G.; Thewlis, K. M.; Vong, A. K.; Watson, J. M.
Studies on a series of potent, orally bioavailable, 5-HT1 receptor
ligands. Bioorg. Med. Chem. Lett. 2007, 17, 5214–5217.
(12) (a) Ward, S. E.; Eddershaw, P. J.; Scott, C. M.; Gordon, L. J.;
Lovell, P. J.; Moore, S. H.; Smith, P. W.; Starr, K. R.; Thewlis,
K. M.; Watson, J. M. Discovery of Potent, Orally Bioavailable,
Selective 5-HT1A/B/D Receptor Antagonists. J. Med. Chem. 2008,
51, 2887–2890. (b) Ward, S. E.; Eddershaw, P. J.; Flynn, S. T.; Gordon,
L.; Lovell, P. J.; Moore, S. H.; Scott, C. M.; Smith, P. W.; Thewlis,
K. M.; Wyman, P. A. Studies on a series of potent, orally bioavailable,
5-HT1 receptor ligands-Part II. Bioorg. Med. Chem. Lett. 2009, 19,
428–432.
(4) (a) McAskill, R.; Mir, S.; Taylor, D. Pindolol augmentation of
antidepressant therapy. Br. J. Psychiatry 1998, 73, 203–208. (b)
Artigas, F.; Perez, V.; Alvarez, E. Pindolol induces a rapid improvement
of depressed patients treated with serotonin reuptake inhibitors. Arch.
Gen. Psychiatry 1994, 51 (1994), 248–251. (c) Blier, P.; Bergeron, R.
Effectiveness of pindolol with selected antidepressant drugs in the
treatment of major depression. J. Clin. Psychopharmacol. 1995, 15,
217–222. (d) Artigas, F.; Celada, P.; Laruelle, M.; Adell, A. How does
pindolol improve antidepressant action? Trends Pharmacol. Sci. 2001,
22, 224–228. (e) Blier, P.; Bergeron, R. The use of pindolol to potentiate
antidepressant medication. J. Clin. Psychiatry 1998, 59, 16–25.
(5) (a) Mewshaw, R. E.; Meagher, K. L.; Zhou, P.; Zhou, D.; Shi, X.;
Scerni, R.; Smith, D. L.; Schechter, L. E.; Andree, T. H. Studies
toward the discovery of the next generation of antidepressants.
Part 2: incorporating a 5-HT1A antagonist component into a class
of serotonin reuptake inhibitors. Bioorg. Med. Chem. Lett. 2002,
12, 307–310. (b) Mewshaw, R. E.; Zhou, D.; Zhou, P.; Shi, X.; Hornby,
G.; Spangler, T.; Scerni, R.; Smith, D.; Schechter, L. E.; Andree, T. H.
Studies toward the discovery of the next generation of antidepressants.
3. Dual 5-HT1A and serotonin transporter affinity within a class of
N-aryloxyethylindolylalkylamines. J. Med. Chem. 2004, 47, 3823–
3842. (c) Hornby, G. A.; Stack, G.; Dawson, L. A.; Nguyen, H. Q.;
Spangler, T.; Smith, D. L.; Mazandarani, H.; Tran, M.; Kalgaonkar, S.;
Zhang, G.; Schechter, L. E.; Andree, T. H. SSRI/5-HT1A antagonists as
future antidepressant agents: a neurochemical assessment of WAY-
163426. Soc. Neurosci. Abstr. 2004, 30, 1024.14. (d) Zhou, D.;
Hatzenbuhler, N. T.; Gross, J. L.; Harrison, B. L.; Evrard, D. A.;
Chlenov, M.; Golembieski, J.; Hornby, G.; Schechter, L. E.; Smith,
D. L.; Andree, T. H.; Stack, G. P. Novel pyridyl-fused 3-amino chroman
derivatives with dual action at serotonin transporter and 5-HT1A
receptor. Bioorg. Med. Chem. Lett. 2007, 17, 3117–3121. (e) Takeu-
chi, K.; Kohn, T. J.; Honigschmidt, N. A.; Rocco, V. P.; Spinazze, P. G.;
Koch, D. J.; Nelson, D. L. G.; Wainscott, D. B.; Ahmad, L. J.; Shaw, J.;
Threlkeld, P. G.; Wong, D. T. Advances toward new antidepressants
beyond SSRIs: 1-aryloxy-3-piperidinylpropan-2-ols with dual 5-HT1A
receptor antagonism/SSRI activities. Part 1. Bioorg. Med. Chem. Lett.
2003, 13, 1903–1905. (f) Takeuchi, K.; Kohn, T .J.; Honigschmidt,
N. A.; Rocco, V. P.; Spinazze, P. G.; Koch, D. J.; Atkinson, S. T.; Hertel,
L. W.; Nelson, D. L.; Wainscott, D. B.; Ahmad, L. J.; Shaw, J.;
Threlkeld, P. G.; Wong, D. T. Advances toward new antidepressants
beyond SSRIs: 1-aryloxy-3-piperidinylpropan-2-ols with dual 5-HT1A
receptor antagonism/SSRI activities. Part 2. Bioorg. Med. Chem. Lett.
2003, 13, 2393–2397. (g) Takeuchi, K.; Kohn, T .J.; Honigschmidt,
N. A.; Rocco, V. P.; Spinazze, P. G.; Atkinson, S. T.; Hertel, L. W.;
(13) Atkinson, P. J.; Bromidge, S. M.; Duxon, M. S.; Gaster, L. M.;
Hadley, M. S.; Hammond, B.; Johnson, C. N.; Middlemiss, D. N.;
North, S. E.; Price, G. W.; Rami, H. K.; Riley, G. J.; Scott, C. M.;
Shaw, T. E.; Starr, K. R.; Stemp, G.; Thewlis, K. M.; Thomas, D. R.;