complex (MHC) protein HLA-DR1, which Wiley and co-
workers6 subsequently demonstrated, via X-ray analysis, to
bind with remarkable similarity to the native peptide. More
recently, we disclosed that heterochiral (D,L-mixed)7 tetra-
pyrrolinones adopt â-turn-like conformations in solution.8
This result suggests that the pyrrolinone scaffold is capable
of mimicking both the â-strand and â-turn conformations
of peptides simply by modification of the backbone stereo-
genicity.
A stringent test for a peptidomimetic would be to devise
an active ligand for a biologically important receptor. It is,
however, important to recognize that observation of affinity
with a receptor known to recognize a particular conformation
(i.e., â-turn) does not necessarily establish the active
conformation but, when taken together with physical data,
provides circumstantial evidence about the bioactive con-
formation of the ligand. With this caveat in mind, we chose
to test the biological relevance of the pyrrolinone â-turn via
the design and synthesis of pyrrolinone-based somatostatin
(SRIF-14) mimetics, both because of our long standing
interest in nonpeptide somatostatin mimetics9 and because
the â-turn of SRIF-14 has been shown to be necessary and
sufficient for both receptor binding and signal transduction.10
Somatostatin (Somatotropin Release Inhibiting Factor,
SRIF-14) is an endogenous, cyclic tetradecapeptide hormone
with numerous biological activities, including the regulation
of both endocrine secretion (i.e., growth hormone, insulin,
glucagon, and secretin) and exocrine secretion (i.e., gastric
acid).11 In addition, SRIF acts both as a neurotransmitter in
cell signaling and as an inhibitor of cell proliferation. To
date five human somatostatin receptor subtypes (hsst 1-5)
belonging to the G-protein coupled receptor (GPCR) family
have been identified.12 The short biological half-life (<3
min)13 of SRIF-14 has led to intense efforts to design stable,
orally bioavailable peptide and nonpeptide mimetics of
somatostatin.14 The former, but not the latter, has been
achieved. Numerous studies, principally by the Merck
group,10 revealed that the biologically active pharmacophore
of SRIF comprises a type I â-turn projecting the essential
Phe7, Trp8, and Lys9 side chains with appropriate trajectories
to interact with the receptor. Peptidal peptidomimetics were
subsequently pioneered by Spatola.15 Research initiated in
1987 at the University of Pennsylvania has gone a long way
to put designed nonpeptidal peptidomimetics of neuropeptide
hormones solidly on the map.9 From the beginning, we
appreciated that there is an important difference in the
molecular nature of the interaction of peptides with enzymes
versus those with receptors such as the G-protein coupled
receptors (GPCRs). The former involve the interaction of
the side chains and the peptide backbone of both the enzymes
and their peptidal substrates. For binding and signal trans-
duction of G-protein coupled receptors with their peptidal
ligands, only side-chain interactions are thought to be
required. Having initially envisioned the polypyrrolinones
for use as protease inhibitors, the scaffold was designed to
interact with the backbone of the proteins, in addition to
providing side-chain interactions.
Nonpeptide peptidomimetics incorporating tryptophan and
lysine mimicking side chains attached to a variety of turn
scaffolds have produced a wide spectrum of biologically
active SRIF mimetics (including scaffolds based on â-D-
glucose,9 benzodiazepines,16 spirolactams,17 tripeptide het-
erocycles,18 and â-peptides19).
We envisioned that a D,L-mixed tetrapyrrolinone would
provide the requisite turn scaffold8 upon which to design
SRIF mimetics as ligands for their G-protein coupled
receptors. Incorporation of side chains onto the â-turn mimic
defined by the Phe7, Trp8, Lys9, Thr10 sequence suggested
a pool of potential SRIF mimetics (Figure 2). Monte Carlo
conformational searches20 predicted that the desired turn
structure would be the low energy conformation of hetero-
chiral oligopyrrolinones. For example, Figure 3 displays a
(2) (a) Smith, A. B., III; Hirschmann, R.; Pasternak, A.; Akaishi, R.;
Guzman, M. C.; Jones, D. R.; Keenan, T. P.; Sprengeler, P. A.; Darke, P.
L.; Emini, E. A.; Holloway, M. K.; Schleif, W. A. J. Med. Chem. 1994,
37, 215-218. (b) Smith, A. B., III; Hirschmann, R.; Pasternak, A.; Yao,
W.; Sprengeler, P. A.; Holloway, M. K.; Kuo, L. C.; Chen, Z.; Darke, P.
L.; Schleif, W. A. J. Med. Chem. 1997, 40, 2440-2444. (c) Smith, A. B.,
III; Hirschmann, R.; Pasternak, A.; Guzman, M. C.; Yokoyama, A.;
Sprengeler, P. A.; Darke, P. L.; Emini, E. A.; Schleif, W. A. J. Am. Chem.
Soc. 1995, 117, 11113-11123.
(3) Smith, A. B., III; Akaishi, R.; Jones, D. R.; Keenan, T. P.; Guzman,
M. C.; Holcomb, R. C.; Sprengeler, P. A.; Wood, J. L.; Hirschmann, R.;
Holloway, M. K. Biopolymers 1995, 37, 29-53.
(4) Smith, A. B., III; Nittoli, T.; Sprengeler, P. A.; Duan, J. J.-W.; Liu,
R.-Q.; Hirschmann, R. F. Org. Lett. 2000, 2, 3809-3812.
(12) (a) Yamada, Y.; Post, S.; Wang, K.; Tager, H.; Bell, G.; Seino, S.
Proc. Natl. Acad. Sci. U.S.A.. 1992, 89, 251-255. (b) Yasuda, K.; Rens-
Domiano, S.; Breder, C.; Law, S.; Saper, C.; Reisine, T.; Bell, G. J. Biol.
Chem. 1992, 267, 20422-20428. (c) O’Carroll, A.-M.; Lolait, S.; Konig,
M.; Mahan, L. Mol. Pharmacol. 1992, 42, 939-946. (d) Bruno, J.; Xu, Y.;
Song, J.; Berelowitz, M. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 11151-
11155. (e) Rohrer, L.; Faulf, F.; Bruns, C.; Buttner, R.; Schule, R. Proc.
Natl. Acad. Sci. U.S.A. 1993, 90, 4196-4200.
(5) Smith, A. B., III; Benowitz, A. B.; Sprengeler, P. A.; Barbosa, J.;
Guzman, M. C.; Hirschmann, R.; Schweiger, E. J.; Bolin, D. R.; Nagy, Z.;
Campbell, R. M.; Cox, D. C.; Olson, G. L. J. Am. Chem. Soc. 1999, 121,
9286-9298.
(6) Lee, K. H.; Olson, G. L.; Bolin, D. R.; Benowitz, A. B.; Sprengeler,
P. A.; Smith, A. B., III; Hirschmann, R. F.; Wiley: D. C. J. Am. Chem.
Soc. 2000, 122, 8370-8375.
(7) While D,L descriptors are not directly applicable to the pyrrolinone
units, their use simplifies comparison with peptidal structures.
(8) Smith, A. B., III; Wang, W.; Sprengeler, P. A.; Hirschmann, R. J.
Am. Chem. Soc. 2000, 122, 11037-11038.
(9) (a) Hirschmann, R.; Nicolaou, K. C.; Pietranico, S.; Leahy, E. M.;
Salvino, J.; Arison, B.; Cichy, M. A.; Spoors, G. P.; Shakespeare, W. C.;
Sprengeler, P. A.; Hamley, P.; Smith, A. B., III; Reisine, T.; Raynor, K.;
Maechler, L.; Donaldson, C.; Vale, W.; Freidinger, R. M.; Cascieri, M. R.;
Strader, C. D. J. Am. Chem. Soc. 1993, 115, 12550-12568 and references
therein. (b) Prasad, V.; Birzin, E.; McVaugh, C.; van Rijn, R. D.; Rohrer,
S.; Chicchi, G.; Underwood, D.; Thornton, E. Smith, A. B., III; Hirschmann,
R. J. Med. Chem. 2003, 46, 1858-1869.
(10) Veber, D. F.; Holly, F. W.; Paleveda, W. J.; Nutt, R. F.; Bergstrand,
S. J.; Torchiana, M.; Glitzer, M. S.; Saperstein, R.; Hirschmann, R. Proc.
Nat. Acad. Sci. U.S.A. 1978, 2636-2640.
(11) For recent reviews of somatostatin, see: (a) Weckbecker, G.; Lewis,
I.; Albert, R.; Schmid, H. A.; Hoyer, D.; Bruns, C. Nat. ReV. Drug DiscoVery
2003, 2, 999-1017. (b) Møller, L. N.; Stidsen, C. E.; Hartmann, B.; Holst,
J. J. Biochim. Biophys. Acta. 2003, 1616, 1-84.
(13) Patel, Y. C.; Wheatley, T. Endocrinology 1983, 112, 220-225.
(14) For a reviews see: (a) Yang, L. Ann. Rep. Med. Chem. 1999, 34,
209-218. (b) Janecka, A.; Zubrzycka, M.; Janecki, T. J. Peptide Res. 2001,
8, 91-107.
(15) Spatola, A. F. In Chemistry and Biochemistry of Amino Acids,
Peptides, and Proteins; Weinstein, B.; Ed.; Marcel Dekker: New York,
1983; p 267.
(16) Papageorgiou, C.; Borer, X. Bioorg. Med. Chem. Lett. 1996, 6, 267-
272.
(17) Damour, D.; Barreau, M.; Blanchard, J.-C.; Burgevin, M.-C.; Doble,
A.; Pantel, G.; Labaudinie`re, R.; Mignani, S. Chem. Lett. 1998, 943-944.
(18) Souers, A.; Virgilio, A. A.; Rosenquist, A.; Fenuik, W.; Ellman, J.
A. J. Am. Chem. Soc. 1999, 121, 1817-1825.
(19) (a) Gademann, K.; Ernst, M.; Hoyer, D.; Seebach, D. Angew. Chem.,
Int. Ed. 1999, 38, 1223-1226. (b) Gademann, K.; Ernst, M.; Seebach, D.;
Hoyer, D. HelV. Chim. Acta 2000, 83, 16-33.
(20) (a) Goodman, J. M.; Still, W. C. J. Comput. Chem. 1991, 12, 1110-
1117. (b) Saunders: M.; Houk, K. N.; Wu, Y.-D.; Still, W. C.; Lipton, M.;
Chang, G.; Guida, W. C. J. Am. Chem. Soc. 1990, 112, 1419-1427.
400
Org. Lett., Vol. 7, No. 3, 2005