2510 J. Phys. Chem. B, Vol. 109, No. 7, 2005
Ikeda et al.
electrostatic fields inside zeolite voids.18 These forces have been
invoked to explain the remarkable stability of otherwise elusive
positively charged intermediates in zeolites and they can affect
the ordering of close-lying electronic states. For example, the
ESR spectra of cis- and trans-decalin (bicyclo[4.4.0]decane)
radical cations, cis-, trans-15•+, support the stabilization of two
different “electronic states” (structure types), depending on the
nature of the zeolite host and the temperature.19 Spectra
IBM P-series 690. The authors are indebted to Pedro Enrique
Atienzar Corvillo for the molecular modeling of the docking
pictures.
Supporting Information Available: Synthesis of donor
molecules. This material is available free of charge via the
2
corresponding to the A1 state of cis-15•+ were obtained in
References and Notes
silicalite (a ) 49.5 G, 4 H, 45K) or ZSM-34 (a ) 50 G, 4 H),
whereas spectra supporting the 2A2 state, predicted to be higher
in energy by (vacuum) calculations, were observed in silicalite
(a ) 28.1 G, 4 H, 95 K) or offretite (a ) 30.2 G, 4 H). For
trans-15•+, structures corresponding to the (lower-energy) 2Ag
state were observed in silicalite (a4H ) 50.5 G) or ZSM 34 (a
) 51.5 G, 4 H), whereas the higher-energy 2Bg state was
supported in Na-Y (a ) 28.5 G, 4 H) or Na-W-5 (a ) 29.8
G, 4 H).
(1) (a) Roth, H. D.; Schilling, M. L. M. J. Am. Chem. Soc. 1985, 107,
716-718. (b) Roth, H. D.; Schilling, M. L. M.; Abelt, C. J. Tetrahedron
1986, 42, 6157-6166. (c) Roth, H. D.; Schilling, M. L. M.; Abelt, C. J. J.
Am. Chem. Soc. 1986, 108, 6098-6099. (d) Momose, T.; Shida, T.;
Kobayashi, T. Tetrahedron 1986, 42, 6337-6342.
(2) (a) Roth, H. D. Proc. IUPAC Symp. Photochem. 1984, 10, 455-
456. (b) Roth, H. D.; Abelt, C. J., J. Am. Chem. Soc. 1986, 108, 2013-
2019. (c) Dai, S.; Wang, J. T.; Williams, F. J. Am. Chem. Soc. 1990, 112,
2835-2836. (d) Dai, S.; Wang, J. T.; Williams, F. J. Am. Chem. Soc. 1990,
112, 2837-2837.
(3) (a) Guo, Q.-X.; Qin, X.-Z.; Wang, J. T.; Williams, F. J. Am. Chem.
Soc. 1988, 110, 1974-1976. (b) Miyashi, T.; Konno, A.; Takahashi, Y. J.
Am. Chem. Soc. 1988, 110, 3676-3677. (c) Ikeda, H.; Minegishi, T.; Abe,
H.; Konno, A.; Goodman, J. L.; Miyashi, T. J. Am. Chem. Soc. 1998, 120,
87-95. (d) Ikeda, H.; Takasaki, T.; Takahashi, Y.; Konno, A.; Matsumoto,
M.; Hoshi, Y.; Aoki, T.; Suzuki, T.; Goodman, J. L.; Miyashi, T. J. Org.
Chem. 1999, 64, 1640-1649. (e) Miyashi, T.; Ikeda, H.; Takahashi, Y.
Acc. Chem. Res. 1999, 32, 815-824.
(4) Doering, W. v. E.; Roth, W. R. Tetrahedron 1962, 18, 67-74.
(5) (a) Ramamurthy, V.; Casper, C. V.; Corbin, D. R. J. Am. Chem.
Soc. 1991, 113, 594-600. (b) Pollack, S. S.; Sprecher, R. F.; Frommell, E.
A. J. Mol. Catal. 1991, 66, 195-203. (c) Rhodes, C. J. J. Chem. Soc.,
Faraday Trans. 1991, 87, 3179-3184. (d) Rhodes, C. J.; Standing, M. J.
Chem. Soc., Perkin Trans. 2 1992, 1455-1460. (e) Chen, F. R.; Fripiat, J.
J. J. Phys. Chem. 1992, 96, 819-823, 1993, 97, 5796-5797. (f) Crockett,
R.; Roduner, E. J. Chem. Soc., Perkin Trans. 2 1993, 1503-1509. (g)
Roduner, E.; Crockett, R.; Wu, L. M. J. Chem. Soc., Faraday Trans. 1993,
89, 2101-2105. (h) Baciocchi, E.; Doddi, G.; Ioele, M.; Ercolani, G.
Tetrahedron 1993, 49, 3793-3800.
Similarly, the ESR spectrum of p-methylphenoxyl radical,
16•, in ZSM-5 showed a well-resolved 1:3:3:1 quartet (g )
2.0042 ( 0.0001; a ) 14.6 G, 3 H; line width ) 2.1 G),9b
analogous to the known solution spectrum of 16• (aâ ) 11.95
G, 3H; a2,6 ) 6.0 G, 2 H).20 However, the species sequestered
in the zeolite failed to reveal any evidence for coupling of the
o-protons, which is significant in solution (a2,6 ) 6.0 G, 2 H).19
In fact, the EPR spectrum of 16•-aryl-d4 showed a spectrum
(aCH3 ) 14.4 G; line width ) 1.3 G) very similar to that of
16•-aryl-h4 in the zeolite. These results were also ascribed to a
distortion of the “conventional” phenoxyl radical, 16•, by a
specific interaction with the zeolite.
In light of these ESR results in zeolites we ascribe the results
for 10•+ in ZSM-5 or H-mor, particularly the apparent limited
delocalization of spin and charge into the phenyl group, to a
distortion of the electronic structure of the sequestered guest
by the strong electrostatic fields inside zeolite voids, an
additional example of such a phenomenon. The unusual and
unexpected results obtained in this study encourage further
research into generating radical cations of unusual structure types
in zeolites.
(6) Garc´ıa, H.; Roth, H. D. Chem. ReV. 2002, 102, 3947-4008.
(7) (a) Corma, A.; Forne´s, V.; Garc´ıa, H.; Mart´ı, V.; Miranda, M. A.
Chem. Mater. 1995, 7, 2136-2143. (b) Folgado, J.-V.; Garc´ıa, H.; Mart´ı,
V.; Espla´, M. Tetrahedron 1997, 53, 4947-4956.
(8) (a) Lakkaraju, P. S.; Zhou, D.; Roth, H. D. Chem. Commun. 1996,
2605-2606. (b) Roth, H. D.; Shen, K.; Lakkaraju, P. S.; Ferna´ndez, L.
Chem. Commun. 1998, 2447-2448. (c) Herbertz, T.; Lakkaraju, P. S.; Roth,
H. D. J. Phys. Chem. A 1999, 103, 11350-11354. (d) Herbertz, T.; Roth,
H. D.; Blume, M.; Blume, F.; Lakkaraju, P. S. Eur. J. Org. Chem. 2000,
467-472.
(9) (a) Lakkaraju, P. S.; Zhang, J.; Roth, H. D. J. Phys. Chem. 1994,
98, 2722-2725. (b) Roth, H. D.; Weng, H.; Zhou, D.; Lakkaraju, P. S.
Acta Chem. Scand. 1997, 51, 626-635.
Conclusion
(10) Shiralkar, V. P.; Clearfield, A. Zeolites 1989, 9, 363-370.
(11) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; J. A. Montgomery, J.; Vreven, T.; Kudin, K. N.;
Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.;
Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;
Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;
Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li,
X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.;
Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;
Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.;
Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels,
A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.;
Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.;
Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz,
P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.;
Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson,
B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03,
revision B.02; Gaussian Inc.: Pittsburgh, PA, 2003.
(12) Becke’s three-parameter exchange functional with the nonlocal
gradient correlation functional of Lee-Yang-Parr was used; cf. (a) Becke,
A. D. J. Chem. Phys. 1993, 98, 5648-5652. (b) Lee, C.; Yang, W.; Parr,
R. G. Phys. ReV. B 1988, 37, 785-789.
(13) Møller, C.; Plesset, M. S. Phys. ReV. B 1934, 46, 618-622.
(14) Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. NBO,
version 3.1.
(15) (a) Raghavachari, K.; Haddon, R. C.; Roth, H. D. J. Am. Chem.
Soc. 1983, 105, 3110-3114. (b) Raghavachari, K.; Roth, H. D. J. Am.
Chem. Soc. 1989, 111, 7132-7136. (c) Roth, H. D.; Schilling, M. L.
M.; Raghavachari, K. J. Am. Chem. Soc. 1984, 106, 253-255.
Upon incorporation into a redox-active pentasil zeolite
[(Na,H)-ZSM-5], 2-arylhexa-1,5-dienes (9; aryl ) anisyl, tolyl,
phenyl) are converted into 1-arylcyclohexane-1,4-diyl radi-
cal cations, 10•+. The ESR spectrum of 10•+ (sextet, g )
2.0026; a ) 9.0 G) indicated the presence of five essentially
equivalent nuclei, indicating limited delocalization of spin and
charge into the phenyl group. The limited delocalization is
ascribed to the strong electrostatic fields inside zeolites. Species
10•+ is stable at room temperature, in striking contrast to the
parent radical cation in cryogenic matrices: cyclohexane-1,4-
diyl, 3•+ is converted to cyclohexene radical cation above 90
K. The structures of radical cation, 10a•+, and of the unsubsti-
tuted parent were probed by density functional theory calcula-
tions.
Acknowledgment. H.I. thanks the Ministry of Education,
Culture, Sports, Science, and Technology of Japan for financial
support for a Grant-in-Aid (No. 1405008) for Scientific Research
in Priority Areas (Area No. 417); H.D.R. acknowledges financial
support from the National Science Foundation (Grant NSF
CHE-9714850). R.R.S. acknowledges the National Computer
Alliance (grant CHE 030060) for support of his work on the