M.-S. Yoo et al. / Tetrahedron Letters 51 (2010) 5601–5603
5603
11. (a) Bakó, T.; Bakó, P.; Keglevich, G.; Bombicz, P.; Kubinyi, M.; Pál, K.; Bodor, S.;
Makó, A.; Toke, L. Tetrahedron: Asymmetry 1589, 2004, 15; (b) Bakó, P.; Bakó, T.;
Mészáros, A.; Keglevich, G.; Szöllosy, A.; Bodor, S.; Makó, A.; Toke, L. Synlett
2004, 643; (c) Bakó, P.; Makó, A.; Keglevich, G.; Kubinyi, M.; Pál, K. Tetrahedron:
As shown in Table 3, this epoxidation system was fairly effec-
tive in many cases for 1,3-diarylenones (chalcones 1).21 The epox-
idation proceeded smoothly within 16–48 h and produced the
}
Asymmetry 2005, 1861, 16; (d) Makó, A.; Rapi, Z.; Keglevich, G.; Szöllosy, Á.;
corresponding (aR,bS)-epoxyketones 2 with high enantioselectivi-
}
ties and good chemical yields.22 As mentioned above, many studies
have been devoted to the asymmetric epoxidation of enones using
cinchona-PTCs,4–9 but most of the methods developed have fo-
Drahos, L.; Hegedus, L.; Bakó, P. Tetrahedron: Asymmetry 2010, 21, 919.
12. Hori, K.; Tamura, M.; Tani, K.; Nishiwaki, N.; Masahiro, A.; Tohda, Y.
Tetrahedron Lett. 2006, 47, 3115.
13. Allingham, M. T.; Howard-Jones, A.; Murphy, P. J.; Thomas, D. A.; Caulkett, P. W.
R. Tetrahedron Lett. 2003, 44, 8677.
cused on only (
Here we provide another efficient synthetic method for producing
a
S,bR)-enantiomers with the exception of one.5a
14. Tanaka, S.; Nagasawa, K. Synlett 2009, 667.
15. Jew, S.-s.; Yoo, M.-S.; Jeong, B.-S.; Park, I. Y.; Park, H.-g. Org. Lett. 2002, 4, 4245.
16. (a) Jew, S.-s.; Jeong, B.-S.; Lee, J.-H.; Yoo, M.-S.; Lee, Y.-J.; Park, B.-s.; Kim, M. G.;
Park, H.-g. J. Org. Chem. 2003, 68, 4514; (b) Castle, S. L.; Srikanth, G. S. C. Org.
Lett. 2003, 5, 3611; (c) Yoo, M.-S.; Jeong, B.-S.; Lee, J.-H.; Park, H.-g.; Jew, S.-s.
Org. Lett. 2005, 7, 1129; (d) Kim, T.-S.; Lee, Y.-J.; Lee, K.; Jeong, B.-S.; Park, H.-g.;
Jew, S.-s. Synlett 2009, 671; (e) Ma, B.; Banerjee, B.; Litvinov, D. N.; He, L.;
Castle, S. L. J. Am. Chem. Soc. 2010, 132, 1159.
17. (a) Andrus, M. B.; Hicken, E. J.; Stephens, J. C. Org. Lett. 2004, 6, 2289; (b)
Mettath, S.; Srikanth, G. S. C.; Dangerfield, B. S.; Castle, S. L. J. Org. Chem. 2004,
69, 6489; (c) Andrus, M. B.; Liu, J.; Ye, Z.; Cannon, J. F. Org. Lett. 2005, 7, 3861;
(d) Andrus, M. B.; Hicken, E. J.; Stephens, J. C.; Bedke, D. K. J. Org. Chem. 2005,
70, 9470; (e) Andrus, M. B.; Hicken, E. J.; Stephens, J. C.; Bedke, D. K. J. Org.
Chem. 2006, 71, 8651; (f) Ma, B.; Parkinson, J. L.; Castle, S. L. Tetrahedron Lett.
2007, 48, 2083; (g) Christiansen, M. A.; Butler, A. W.; Hill, A. R.; Andrus, M. B.
Synlett 2009, 653.
(aR,bS)-epoxyketones 2 using the cinchona-PTC 5c.
In conclusion, we developed an efficient method for the synthe-
sis of optically enriched (aR,bS)-epoxyketones 2 from chalcones 1
via enantioselective phase-transfer catalytic epoxidation with so-
dium hypochlorite oxidant and the chiral cinchona-PTC 5c bearing
2,3,4-trifluorobenzyl moiety.
Acknowledgment
This work was supported by the Yeungnam University Research
Grants in 2008 (Grant No.: 208-A-235-257).
18. Ku, J.-M.; Yoo, M.-S.; Park, H.-g.; Jew, S.-s.; Jeong, B.-S. Tetrahedron 2007, 63,
8099.
References and notes
19. An interesting tendency can be found in the asymmetric epoxidation of
chalcones using cinchona-PTCs. A cinchona-PTC with free hydroxy group at
C(9) position generally provides better enantioselectivity when an alkaline
peroxide is used as the oxidant. On the other hand, a hypochlorite oxidant is
well suited for the C(9)-O-alkylated cinchona–PTC.5–8
1. Lauret, C. Tetrahedron: Asymmetry 2001, 12, 2359.
2. (a) Porter, M. J.; Skidmore, J. Chem. Commun. 2000, 1215; (b) Lauret, C.; Roberts,
S. M. Aldrichim. Acta 2002, 35, 47; (c) Díez, D.; Núñez, M. G.; Antón, A. B.; García,
P.; Moro, R. F.; Garrido, N. M.; Marcos, I. S.; Basabe, P.; Urones, J. G. Curr. Org.
Synth. 2008, 5, 186.
20. Use of C(9)-O-benzyl analog of 5c under the conditions of entry 7 in Table 2
gave the epoxide 2a at a chemical yield of 80% and 86% ee.
3. Maruoka, K. Asymmetric Phase Transfer Catalysis; Wiley-VCH Verlag GmbH & Co
KGaA: Weinheim, 2008.
21. Typical procedure: A mixture of trans-chalcone (1a, 35 mg, 0.17 mmol) and PTC
5c (4.8 mg, 8.5 lmol) in toluene (1 mL) was cooled at 0 °C. 11% Aqueous
4. Hummelen, J. C.; Wynberg, H. Tetrahedron Lett. 1978, 19, 1089.
5. (a) Lygo, B.; Wainwright, P. G. Tetrahedron Lett. 1998, 39, 1599; (b) Lygo, B.;
Wainwright, P. G. Tetrahedron 1999, 55, 6289; (c) Lygo, B.; To, D. C. M.
Tetrahedron Lett. 2001, 42, 1343; (d) Lygo, B.; Gardiner, S. T.; McLeod, M. C.; To,
D. C. M. Org. Biomol. Chem. 2007, 5, 2283.
6. (a) Arai, S.; Tsuge, H.; Shioiri, T. Tetrahedron Lett. 1998, 39, 7563; (b) Arai, S.;
Tsuge, H.; Oku, M.; Miura, M.; Shioiri, T. Tetrahedron 2002, 58, 1623.
7. Corey, E. J.; Zhang, F.-Y. Org. Lett. 1999, 1, 1287.
8. (a) Ye, J.; Wang, Y.; Liu, R.; Zhang, G.; Zhang, Q.; Chen, J.; Liang, X. Chem.
Commun. 2003, 2714; (b) Ye, J.; Wang, Y.; Liang, X. Adv. Synth. Catal. 2004, 346,
691.
9. Jew, S.-s.; Lee, J.-H.; Jeong, B.-S.; Yoo, M.-S.; Kim, M. J.; Lee, Y.-J.; Lee, J.; Choi, S.-
H.; Lee, K.; Lah, M.-S.; Park, H.-g. Angew. Chem., Int. Ed. 2005, 44, 1383.
10. Ooi, T.; Ohara, D.; Tamura, M.; Maruoka, K. J. Am. Chem. Soc. 2004, 126, 6844.
sodium hypochlorite solution (1.25 mL, 1.7 mmol) was then added to the
mixture, and the resulting mixture was stirred vigorously at 0 °C for 48 h. The
mixture was diluted with ethyl acetate (10 mL) and water (5 mL), and the
layers were separated. The aqueous layer was extracted with ethyl acetate
(10 mL Â 2). The combined organic layer was washed with brine, and dried
over MgSO4, filtered, and concentrated in vacuo. The residue was purified by
flash column chromatography on silica gel (hexanes/ethyl acetate = 50:1) to
give the epoxyketone 2a (31 mg, 82%) as a white solid. HPLC conditions:
Chiralpak AD, hexanes/ethanol = 90:10, 1 mL/min, 254 nm, tR = 17.7 min (2a),
25.7 min (3a), 91% ee.
22. The epoxidation of enones with alkyl or other non-phenyl groups attached to
carbonyl led to only modest enantioselection.