6574
N. Shimada et al. / Tetrahedron Letters 51 (2010) 6572–6575
3. Yin, H.-B.; He, Z.-S.; Ye, Y. J. Nat. Prod. 2000, 63, 1164–1165.
4. (a) Snider, B. B.; Grabowski, J. F. Tetrahedron Lett. 2005, 46, 823–825; (b) Snider,
B. B.; Grabowski, J. F. Tetrahedron 2006, 62, 5171–5177.
MeO
OMe
OMe
MeO
O
OMe
OMe
MeO
O
OMe
OMe
5. For books and reviews on 1,3-dipolar cycloadditions of carbonyl ylides, see: (a)
Padwa, A.; Weingarten, M. D. Chem. Rev. 1996, 96, 223–269; (b) Doyle, M. P.;
McKervey, M. A.; Ye, T. In Modern Catalytic Methods for Organic Synthesis with
Diazo Compounds; Wiley-Interscience: New York, 1998. Chapter 7; (c) Hodgson,
D. M.; Pierard, F. Y. T. M.; Stupple, P. A. Chem. Soc. Rev. 2001, 30, 50–61; (d)
Mehta, G.; Muthusamy, S. Tetrahedron 2002, 58, 9477–9504; (e) Savizky, R. M.;
Austin, D. J. In Modern Rhodium-Catalyzed Organic Reactions; Evans, P. A., Ed.;
Wiley-VCH: Weinheim, 2005. Chapter 19.
6. For a book and reviews on the syntheses of natural products by a carbonyl ylide
cycloaddition strategy, see: (a) McMills, M. C.; Wright, D. In Synthetic
Applications of 1, 3-Dipolar Cycloaddition Chemistry Toward Heterocycles and
Natural Products; Padwa, A., Pearson, W. H., Eds.; John Wiley & Sons: Hoboken,
2003. Chapter 4; (b) Padwa, A. Helv. Chim. Acta 2005, 88, 1357–1374; (c) Padwa,
A. J. Organomet. Chem. 2005, 690, 5533–5540; (d) Nair, V.; Suja, T. D.
Tetrahedron 2007, 63, 12247–12275; (e) Singh, V.; Krishna, U. M.; Vikrant;
Trivedi, G. K. Tetrahedron 2008, 64, 3405–3428; (f) Padwa, A. Chem. Soc. Rev.
2009, 38, 3072–3081.
7. For other more recent works, see: (a) Geng, Z.; Chen, B.; Chiu, P. Angew. Chem.,
Int. Ed. 2006, 45, 6197–6201; (b) Hirata, Y.; Nakamura, S.; Watanabe, N.;
Kataoka, O.; Kurosaki, T.; Anada, M.; Kitagaki, S.; Shiro, M.; Hashimoto, S. Chem.
Eur. J. 2006, 12, 8898–8925; (c) England, D. B.; Padwa, A. Org. Lett. 2007, 9,
3249–3252; (d) England, D. B.; Padwa, A. J. Org. Chem. 2008, 73, 2792–2802; (e)
Lam, S. K.; Chiu, P. Chem. Eur. J. 2007, 13, 9589–9599; (f) Kim, C. H.; Jang, K. P.;
Choi, S. Y.; Chung, Y. K.; Lee, E. Angew. Chem., Int. Ed. 2008, 47, 4009–4011.
8. In classification of reaction integration, tandem reaction is categorized as a time
and space integration by the Yoshida group. Suga, S.; Yamada, D.; Yoshida, J.
Chem. Lett. 2010, 39, 404–406.
a,b
c
d
H
O
H
CO2tBu
O
H
CO2tBu
OH
16
17
MeO
18
MeO
OR
OTBDPS
OMe
MeO
OH
OMe
OMe
f,g
h
H
e
O
H
O
H
O
O
OR
OTBDPS
OH
O
19: R = H
20: R = TBDPS
21
1 (95% ee)
[α]D23 +327.5 (c 0.55, MeOH)
lit.1 [α]D23 +1.7 (c 0.23, MeOH)
Scheme 3. Reagents and conditions: (a) NaHMDS, THF, ꢀ78 °C, 1 h, then PhNTf2,
ꢀ78 to ꢀ10 °C, 3 h, 96%; (b) Pd(OAc)2, PPh3, nBu3N, HCO2H, DMF, 60 °C, 40 min,
84%; (c) LiAlH4, THF, 0 °C, 1.5 h, 99%; (d) NbCl5, ClCH2CH2Cl, 70 °C, 1 h, 79%; (e)
TBDPSCl, imidazole, DMAP, DMF, 24 h, 84%; (f) SeO2, dioxane, reflux, 24 h, 81%; (g)
MnO2, CH2Cl2, 15 h, 90%; (h) TBAF, THF, 2 h, 74%.
70 °C facilitated regioselective demethylation, affording phenol 19
as a sole product in 79% yield. Protection of the two hydroxy
groups with TBDPSCl and imidazole provided bis-TBDPS ether 20
in 84% yield. Allylic oxidation of 20 with SeO2 followed by oxida-
tion of the resulting allylic alcohol with MnO2 afforded enone 21
in 73% yield. Finally, removal of the two TBDPS protecting groups
with TBAF completed the asymmetric synthesis of descurainin
(1). The optical rotation of the synthetic material 1 (95% ee),28
9. (a) Hodgson, D. M.; Stupple, P. A.; Johnstone, C. Tetrahedron Lett. 1997, 38,
6471–6472; (b) Hodgson, D. M.; Stupple, P. A.; Johnstone, C. Chem. Commun.
1999, 2185–2186; (c) Hodgson, D. M.; Stupple, P. A.; Pierard, F. Y. T. M.;
Labande, A. H.; Johnstone, C. Chem. Eur. J. 2001, 7, 4465–4476; (d) Hodgson, D.
M.; Glen, R.; Grant, G. H.; Redgrave, A. J. J. Org. Chem. 2003, 68, 581–586; (e)
Hodgson, D. M.; Labande, A. H.; Pierard, F. Y. T. M.; Expósito Castro, M. Á. J. Org.
Chem. 2003, 68, 6153–6159; (f) Hodgson, D. M.; Brückl, T.; Glen, R.; Labande, A.
H.; Selden, D. A.; Dossetter, A. G.; Redgrave, A. J. Proc. Natl. Acad. Sci. U.S.A. 2004,
101, 5450–5454; (g) Hodgson, D. M.; Glen, R.; Redgrave, A. J. Tetrahedron:
Asymmetry 2009, 20, 754–757.
10. (a) Kitagaki, S.; Anada, M.; Kataoka, O.; Matsuno, K.; Umeda, C.; Watanabe, N.;
Hashimoto, S. J. Am. Chem. Soc. 1999, 121, 1417–1418; (b) Kitagaki, S.;
Yasugahira, M.; Anada, M.; Nakajima, M.; Hashimoto, S. Tetrahedron Lett. 2000,
41, 5931–5935; (c) Tsutsui, H.; Shimada, N.; Abe, T.; Anada, M.; Nakajima, M.;
Nakamura, S.; Nambu, H.; Hashimoto, S. Adv. Synth. Catal. 2007, 349, 521–526;
(d) Shimada, N.; Anada, M.; Nakamura, S.; Nambu, H.; Tsutsui, H.; Hashimoto,
S. Org. Lett. 2008, 10, 3603–3606; (e) Nambu, H.; Hikime, M.; Krishnamurthi, J.;
Kamiya, M.; Shimada, N.; Hashimoto, S. Tetrahedron Lett. 2009, 50, 3675–3678;
(f) Kurosaki, Y.; Shimada, N.; Anada, M.; Nambu, H.; Hashimoto, S. Bull. Korean
Chem. Soc. 2010, 31, 694–696.
11. Suga and co-workers reported enantioselective 1,3-dipolar cycloadditions of
carbonyl ylides using chiral Lewis acid catalysts: (a) Suga, H.; Inoue, K.; Inoue,
S.; Kakehi, A. J. Am. Chem. Soc. 2002, 124, 14836–14837; (b) Suga, H.; Inoue, K.;
Inoue, S.; Kakehi, A.; Shiro, M. J. Org. Chem. 2005, 70, 47–56; (c) Suga, H.;
Ishimoto, D.; Higuchi, S.; Ohtsuka, M.; Arikawa, T.; Tsuchida, T.; Kakehi, A.;
Baba, T. Org. Lett. 2007, 9, 4359–4362; (d) Suga, H.; Highchi, S.; Ohtsuka, M.;
Ishimoto, D.; Arikawa, T.; Hashimoto, Y.; Misawa, S.; Tsuchida, T.; Kakehi, A.;
Baba, T. Tetrahedron 2010, 66, 3070–3089.
12. Very recently, Iwasawa and co-workers reported a catalytic asymmetric [3+2]
cycloaddition of platinum-containing carbonyl ylides with vinyl ethers. Ishida,
K.; Kusama, H.; Iwasawa, N. J. Am. Chem. Soc. 2010, 132, 8842–8843.
13. For the effective use of Rh2(S-TCPTTL)4 (4) in enantioselective aminations, see:
(a) Yamawaki, M.; Tsutsui, H.; Kitagaki, S.; Anada, M.; Hashimoto, S.
Tetrahedron Lett. 2002, 43, 9561–9564; (b) Yamawaki, M.; Tanaka, M.; Abe,
T.; Anada, M.; Hashimoto, S. Heterocycles 2007, 72, 709–721; (c) Tanaka, M.;
Kurosaki, Y.; Washio, T.; Anada, M.; Hashimoto, S. Tetrahedron Lett. 2007, 48,
8799–8802; (d) Anada, M.; Tanaka, M.; Shimada, N.; Nambu, H.; Yamawaki,
M.; Hashimoto, S. Tetrahedron 2009, 65, 3069–3077.
½
a 2D3
ꢁ
+327.5 (c 0.55, MeOH), was greatly different from the litera-
ture value [lit.1
½ ꢁ
a 2D3
+1.7 (c 0.23, MeOH)], albeit with the same
sign. This observation suggests that 1 could be biosynthesized in
near-racemic form like natural product 2.
In summary, we have achieved the first catalytic asymmetric
synthesis of descurainin. The key features of this synthesis include
an efficient construction of the 8-oxabicyclo[3.2.1]octane skeleton
employing Rh2(R-TCPTTL)4-catalyzed tandem formyl-derived car-
bonyl ylide formation–1,3-dipolar cycloaddition, a stereoselective
alkene hydrogenation, an oxidation with Fremy’s salt and a regio-
selective demethylation with NbCl5 developed by the group of Arai
and Nishida. Further application of the catalytic enantioselective
carbonyl ylide cycloaddition methodology to asymmetric synthesis
of biologically active natural products is currently in progress.
Acknowledgments
This research was supported, in part, by a Grant-in-Aid for Sci-
entific Research on Innovative Areas (Project No. 2105: Organic
Synthesis Based on Reaction Integration) from the Ministry of Edu-
cation, Culture, Sports, Science and Technology, Japan. We thank S.
Oka, M. Kiuchi and T. Hirose of the Center for Instrumental Analysis
at Hokkaido University for mass measurements and elemental
analysis.
14. Charette and co-workers recently reported highly efficient asymmetric
cyclopropanation with
a-nitro diazoacetophenones using Rh2(S-TCPTTL)4 (4),
where the X-ray crystal structure of 4 was determined: Lindsay, V. N. G.; Lin,
W.; Charette, A. B. J. Am. Chem. Soc. 2009, 131, 16383–16385.
15. Iwabuchi and co-workers recently reported highly enantioselective
intramolecular aza-spiroannulation onto an indole nucleus catalyzed by
Rh2(S-TCPTTL)4 (4). (a) Sato, S.; Shibuya, M.; Kanoh, N.; Iwabuchi, Y. J. Org.
Chem. 2009, 74, 7522–7524; (b) Sato, S.; Shibuya, M.; Kanoh, N.; Iwabuchi, Y.
Chem. Commun. 2009, 6264–6266.
Supplementary data
Supplementary data associated with this article can be found, in
16. Shimada, N.; Hanari, T.; Kurosaki, Y.; Takeda, K.; Anada, M.; Nambu, H.; Shiro,
M.; Hashimoto, S. J. Org. Chem. 2010, 75, 6039–6042.
17. (a) Nakamura, S.; Sugano, Y.; Kikuchi, F.; Hashimoto, S. Angew. Chem., Int. Ed.
2006, 45, 6532–6535; (b) Snider, B. B.; Wu, X.; Nakamura, S.; Hashimoto, S. Org.
Lett. 2007, 9, 873–874.
References and notes
18. Recently, Peterson and co-workers reported that compound
2 could be
1. Sun, K.; Li, X.; Li, W.; Wang, J.; Liu, J.; Sha, Y. Chem. Pharm. Bull. 2004, 52, 1483–
produced from glucose, glycine, and ferulic acid in 3% yield in a simulated
backing model system (10% moisture at 200 °C for 15 min). They also reported
that 2 suppressed the bacterial lipopolysaccharide-mediated expression of two
1486.
2. Wen, Y.; He, S.; Xue, K.; Cao, F. Zhong Cao Yao 1986, 17, 122. Chem. Abstr. 1986,
105, 75884m.