P. Holmberg et al. / Bioorg. Med. Chem. Lett. 15 (2005) 747–750
749
ist. Introduction of diortho substituents into a phenyl
ring has previously been shown to affect both the affinity
and selectivity for 5-HT7 receptors.23,28 Changing the
ortho substituents from dimethyl to dimethoxy as in
compound 13, decreases the affinity 27 times for the 5-
HT7 receptor. This is in contrast to the 8-aryl-3-amino-
chroman series where the dimethoxy derivatives were
identified as having high affinity for the receptor.23
The corresponding resorcinol derivative 17 is devoid of
or has low affinity to the 5-HT7 receptor. The 1-meth-
oxy-2-naphthyl derivative 16 showed both some affinity
and selectivity for 5-HT7 receptors.
dated in the binding site of the serotonin 5-HT7
receptor.
Acknowledgements
Financial support was obtained from AstraZeneca R&D
So¨derta¨lje, Sweden. We are grateful to Personal Chem-
istry for providing the Smith Microwave Synthesizers
and to Dr. A. Karlen for the computational chemistry.
References and notes
A requisite for agonism in the 8-aryl-3-aminochroman
series appears to be dipropyl substitution at the nitrogen
as in compound 5, while the dimethylsubstituted 6 is a
weak partial agonist. In this series, the N,N-dimethyl-
amino derivative 14 is a highly efficacious partial
agonist.
1. Shen, Y.; Monsma, F. J.; Metcalf, M. A.; Jose, P. A.;
Hamblin, M. W.; Sibley, D. R. J. Biol. Chem. 1993, 268,
18200–18204.
2. Lovenberg, T. W.; Baron, B. M.; Lecea, L.; de Miller, J.
O.; Prosser, R. A.; Rea, M. A.; Foye, P. E.; Rucke, M.;
Slone, A. L.; Siegel, B. W.; Danielsson, P. E.; Sutcliffe, J.
G.; Erlander, M. G. Neuron 1993, 11, 449–458.
3. Ruat, M.; Traiffort, E.; Leurs, R.; Tardivel-Lacombe, J.;
Diaz, J.; Arrang, J.-M.; Schwartz, J.-C. Proc. Natl. Acad.
Sci. U.S.A. 1993, 90, 8547–8551.
To rationalize the difference in stereoselectivity and
activity between 6 (the (R)-isomer) and 14 (the (S)-iso-
mer) the two regioisomers can be overlayed as shown
in Figure 3. We performed a Monte Carlo search in
Macromodel using the MM2 force field to identify
low-energy conformations of the selective 5-HT7 ligands
6 (partial agonist) and 14 (partial agonist). The lowest
energy conformations of 6 and the second lowest energy
conformation of 14 were used to compare the two struc-
tures. In this fit the 8-aryl and 6-aryl substituents over-
lap. The nitrogen and the nitrogen lone-pair also
overlaps and can interact with the same hypothetical
binding points in the receptor. However, the position
of the oxygen in the chroman ring is different between
the two isomers and may to a certain extent explain
the differences observed between the 8- and 6-aryl series.
There are other options to overlay these structures.
However, the present overlay rationalizes the difference
in stereochemistry as well as having the common bulk of
the compounds in the same region.
4. Meyerhof, W.; Obermuller, F.; Fehr, S.; Richter, D. DNA
¨
Cell Biol. 1993, 12, 401–409.
5. Plassat, J.-L.; Amlaiky, N.; Hen, R. Mol. Pharmacol.
1993, 44, 229–236.
6. Bard, J. A.; Zgombick, J.; Adham, N.; Vaysse, P.;
Branchek, T. A.; Weinshank, R. L. J. Biol. Chem. 1993,
268, 23422–23426.
7. Tsou, A.-P.; Kosaka, A.; Bach, C.; Zuppan, P.; Yee, C.;
Tom, L.; Alvarez, R.; Ramsey, S.; Bonhaus, D. W.;
Stefanich, E.; Jakeman, L.; Eglen, R. M.; Chan, H. W. J.
Neurochem. 1994, 63, 456–464.
8. Heidman, D. E. A.; Metcalf, M. A.; Kohen, R.; Hamblin,
M. W. J. Neurochem. 1997, 413, 489–494.
9. Stam, N. J.; Roesnik, C.; Dijcks, F.; Garritsen, A.; van
Herpen, A.; Olijve, W. FEBS Lett. 1997, 413, 489–
494.
10. Jasper, J. R.; Kosaka, A.; To, Z. P.; Chang, D. J.; Eglen,
R. M. Br. J. Pharmacol. 1997, 122, 126–132.
11. Roth, B.; Craigo, S. C.; Choudhary, M. S.; Uluer, A.;
Monsma, F. J., Jr.; Shen, Y.; Meltzer, H. Y.; Sibley, D. R.
J. Pharmacol. Exp. Ther. 1994, 268, 1403–
1410.
12. Sumova, A.; Maywod, E. S.; Selvage, D.; Ebling, F. J. P.;
Hastings, M. H. Brain Res. 1996, 709, 88–96.
13. Ying, S.-W.; Rusak, B. Brain Res. 1997, 755, 246–
254.
The present series of compounds, although limited,
seems to constitute an interesting starting point for fur-
ther structure–activity relationship (SAR) studies at 5-
HT7 receptors. The results indicate that bulky lipophilic
substituents at C6 in 3-aminochromanes are accommo-
14. Schwartz, W. J. Adv. Int. Med. 1993, 38, 81–106.
15. Leung, E.; Walsh, L. K. M.; Pulido-Rios, M. T.; Eglen, R.
M. Br. J. Pharmacol. 1996, 117, 926–930.
16. Cushing, D. J.; Zgombick, J. M.; Nelson, D. L.; Cohen,
M. L. J. Pharmacol. Exp. Ther. 1996, 277, 1560–
1566.
17. Martin, G. R.; Wilson, R. J. Br. J. Pharmacol. 1995, 114,
383, Suppl S.
18. Sleight, A. J.; Boess, F. G.; Bourson, A.; Sibley, D. R.;
Monsma, F., Jr. J. Drug News Perspect. 1997, 10, 214–
224.
19. Forbes, I. T.; Douglas, S.; Gribble, A. D.; Ife, R. J.; King,
F. D.; Lightfoot, A. P.; Garner, A. E.; Riley, G. J.; Jeffrey,
P.; Stevens, A. J.; Stean, T. O.; Thomas, D. R. Bioorg.
Med. Chem. Lett. 2002, 12, 3341–3344.
20. Kikuchi, C.; Nagaso, H.; Hiranuma, T.; Koyama, M.
J. Med. Chem. 1999, 42, 533–535.
Figure 3. Best fit of the 5-HT7 partial agonists 6 (gray) and 14 (black).
Mean distance between fitted atoms (centroids in the two aromatic
˚
rings and the N-electron pairs) is 0.67A.