Communications
Keywords: Claisen rearrangement · Diels–Alder
.
reaction · natural products · rate acceleration · total
synthesis
[1] J. Asano, K. Chiba, M. Tada, T. Yoshii, Phytochemistry
1996, 41, 815 – 820.
[2] For a number of biologically active, phloroglucinol-
derived natural products, see: a) M. Tada, K. Chiba, H.
Yamada, H. Maruyama, Phytochemistry 1991, 30, 2559 –
2562; b) M. Nagai, M. Tada, Chem. Lett. 1987, 1337 –
1340.
[3] An elegant total synthesis of gambogin was recently
reported: E. J. Tisdale, I. Slobodov, E. A. Theodorakis,
Proc. Natl. Acad. Sci. USA 2004, 101, 12030 – 12035; for
other related publications from this group, see: a) E. J.
Tisdale, C. Chowdhury, B. G. Vong, H. Li, E. A.
Theodorakis, Org. Lett. 2002, 4, 909 – 912; b) E. J.
Tisdale, B. G. Vong, H. Li, S. H. Kim, C. Chowdhury,
E. A. Theodorakis, Tetrahedron 2003, 59, 6873 – 6887;
c) E. J. Tisdale, I. Slobodov, E. A. Theodorakis, Org.
Biomol. Chem. 2003, 1, 4418 – 4422.
[4] For recent reviews on biomimetic and cascade-type
strategies in total synthesis, see: a) K. C. Nicolaou, S. A.
Snyder, T. Montagnon, G. E. Vassilikogiannakis, Angew.
Chem. 2002, 114, 1742 – 1773; Angew. Chem. Int. Ed.
2002, 41, 1668 – 1698; b) K. C. Nicolaou, T. Montagnon,
S. A. Snyder, Chem. Commun. 2003, 551 – 564.
Figure 1. Molecular-orbital rationale for the acceleration of the Claisen/Diels–Alder
cascade reaction (4!3a) by protic solvents.
[5] For previous total syntheses of natural products with
trioxatetracyclo [7.4.1.02,7.02,11]tetradecane-type struc-
tures from this group, see: a) K. C. Nicolaou, J. Li, Angew.
Chem. 2001, 113, 4394 – 4398; Angew. Chem. Int. Ed. 2001, 40,
4264 – 4268; b) K. C. Nicolaou, P. K. Sasmal, H. Xu, K. Namoto,
A. Ritzꢀn, Angew. Chem. 2003, 115, 4357 – 4361; Angew. Chem.
Int. Ed. 2003, 42, 4225 – 4229; c) K. C. Nicolaou, P. K. Sasmal, H.
Xu, J. Am. Chem. Soc. 2004, 126, 5493 – 5501.
intramolecular collapse was the faster of the two pericyclic
reactions involved in this cascade. To the best of our
knowledge, this is the first example of a Claisen/Diels–
Alder cascade sequence accelerated by water.
The synthesized compounds 20a–c, except for 20a, which
are diastereomeric mixtures, like gambogin 1 itself, were
tested for their cytotoxicity against human epidermoid cancer
cell line KB-31 and its taxol-resistant mutant cell line KB-
8511. The results are shown in Table 3. Both the methyl- and
isopentyl-substituted analogues 20a and 20c exhibited
[6] For recent examples of Claisen rearrangements in organic
synthesis, see: a) K. C. Nicolaou, J. A. Pfefferkorn, A. J.
Roecker, G.-Q. Cao, S. Barluenga, H. J. Mitchell, J. Am. Chem.
Soc. 2000, 122, 9939 – 9953, and references therein; b) S.
Yamaguchi, M. Ishibashi, K. Akasaka, H. Yokoyama, M.
Miyazawa, Y. Hirai, Tetrahedron Lett. 2001, 42, 1091 – 1093;
c) I. Iwai, J. Ide, Chem. Pharm. Bull. 1963, 11, 1042 – 1049; d) J.
Hlubucek, E. Ritchie, W. C. Taylor, Tetrahedron Lett. 1969, 10,
1369 – 1370; e) W. K. Anderson, E. J. LaVoie, P. G. Whitkop, J.
Org. Chem. 1974, 39, 881 – 884.
Table 3: Cytotoxicity of gambogin (1) and its analogues (20a–c).[a]
Entry
Compound
IC50 [mM]
KB-31
KB-8511
[7] For the Claisen-rearrangement-based hypothesis regarding the
biosynthesis of Garcina family natural products, see: a) A. J.
Quillinan, F. Scheinmann, J. Chem. Soc. Perkin Trans. 1 1972,
1382 – 1387; b) A. J. Quillinan, F. Scheinmann, J. Chem. Soc.
1971, 966 – 967.
[8] J. Mulzer, B. Schꢁllhorn, Angew. Chem. 1990, 102, 433 – 434;
Angew. Chem. Int. Ed. Engl. 1990, 29, 431 – 432.
[9] S. Horne, R. Rodrigo, J. Org. Chem. 1990, 55, 4520 – 4522.
[10] A. L. J. Bechwith, C. B. Thomas, J. Chem. Soc. Perkin Trans. 2
1973, 861 – 872.
1
2
3
4
1
9.35
8.41
>10
6.01
>10
>10
>10
>10
20a
20b
20c
[a] The antiproliferative effects of the tested compounds were assessed
in human epidermoid cancer cell lines: the parent cell line (KB-31) and
the taxol-resistant (due to Pgp-overexpression) cell line (KB-8511).
slightly higher potencies than the natural compound 1 against
KB-31, while the ethyl derivative 20b was less active. All
compounds, including gambogin itself, failed to exhibit
significant cytotoxicity against the taxol-resistant mutant
cell line KB-8511 at concentrations below 10 mm. The
chemistry described herein may provide entries to biologi-
cally active molecules of the gambogin type and stimulate
further studies in the reaction process development.
[11] J. D. Godfrey, Jr., R. H. Mueller, T. C. Sedergran, N. Soundar-
arajan, V. J. Colandrea, Tetrahedron Lett. 1994, 35, 6405 – 6408.
[12] P. H. Kahn, J. Cossy, Tetrahedron Lett. 1999, 40, 8113 – 8114.
[13] We thank Professor M. Tada (Tokyo University of Agriculture
and Techonology, Japan) for sending us the 1H NMR and
13C NMR spectra of natural gambogin for comparison.
[14] For Claisen rearrangements accelerated in protic solvents, see:
a) J. F. Kincaid, D. S. Tarbell, J. Am. Chem. Soc. 1939, 61, 3085 –
3089; b) W. N. White, D. Gwynn, R. Schlitt, C. Girard, W. Fife, J.
Am. Chem. Soc. 1958, 80, 3271 – 3277; c) H. L. Goering, R. R.
Jacobson, J. Am. Chem. Soc. 1958, 80, 3277 – 3285; d) R. M.
Received: October 5, 2004
760
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2005, 44, 756 –761