36
T. Ishi-i et al. / Tetrahedron 69 (2013) 29e37
Ajayaghosh, A.; Praveen, V. K. Acc. Chem. Res. 2007, 40, 644e656; (e) Elemans, J. A.
4.14. Dynamic light scattering
A. W.;van Hameren, R.; Nolte, R. J. M.; Rowan, A. E. Adv. Mater. 2006,18,1251e1266;
(f) Astruc, D.; Boisselier, E.; Ornelas, C. Chem. Rev. 2010, 110, 1857e1959; (g)
Dynamic light scattering was performed on Photal OTSUKA
ELECTRONICS DLS-7000 with a 632 nm HeeNe laser source using
a 12 mm width quarts cell.
€
€
Wurthner, F.; Kaiser, T. E.; Saha-Moller, C. R. Angew. Chem., Int. Ed. 2011, 50,
3376e3410; (h) Magginia, L.; Bonifazi, D. Chem. Soc. Rev. 2012, 41, 211e241.
€
2. (a) Simpson, C. D.; Wu, J.; Watson, M. D.; Mullen, K. J. Mater. Chem. 2004, 14,
494e504; (b) Yamamoto, Y.; Fukushima, T.; Jin, W.; Kosaka, A.; Hara, T.;
Nakamura, T.; Saeki, A.; Seki, S.; Tagawa, S.; Aida, T. Adv. Mater. 2006, 18,
€
1297e1300; (c) Wu, J.; Pisula, W.; Mullen, K. Chem. Rev. 2007, 107, 718e747; (d)
4.15. Measurement of two-photon absorption
€
Pisula, W.; Feng, X.; Mullen, K. Adv. Mater. 2010, 22, 3634e3649.
€
3. (a) Adam, D.; Schuhmacher, P.; Simmerer, J.; Haussling, L.; Siemensmeyer, K.;
Two-photon absorption cross sections were measured from 649
to 1004 nm using the open-aperture Z-scan method38 with an
optical parametric amplifier (SpectraPhysics OPA-800) pumped by
a femtosecond Ti:sapphire regenerative amplifier system operating
at 1 kHz. The optical setup used for the Z-scan measurements is
described elsewhere.39 The laser beam was reshaped by passing
through a small iris aperture to obtain a near Gaussian spatial
profile. The pulse width of the laser beam was 110e130 fs in FWHM,
which were measured by an autocorrelator with assuming
a Gaussian temporal profile and used to calculate on-axis peak
intensities at the focal point I0. Sample solution was hold in a 2-mm
quartz cuvette and used for the measurements.
Etzbach, K. H.; Ringsdorf, H.; Haarer, D. Nature 1994, 371, 141e143; (b) Kato, T.;
Mizoshita, N.; Kishimoto, K. Angew. Chem., Int. Ed. 2006, 45, 38e68; (c) Shimizu,
Y.; Oikaw, K.; Nakayama, K.; Guillon, D. J. Mater. Chem. 2007, 17, 4223e4229; (d)
Kato, T.; Yasuda, T.; Kamikawa, Y.; Yoshio, M. Chem. Commun. 2009, 729e739.
4. (a) Wu, W.; Liu, Y.; Zhu, D. Chem. Soc. Rev. 2010, 39, 1489e1502; (b) Kim, F. S.;
Ren, G.; Jenekhe, S. A. Chem. Mater. 2011, 23, 682e732; (c) Operamolla, A.;
Farinola, G. M. Eur. J. Org. Chem. 2011, 423e450.
€
5. (a) Wu, J.; Watson, M. D.; Mullen, K. Angew. Chem., Int. Ed. 2003, 42,
ꢀ
€
5329e5333; (b) Samorõ, P.; Fechtenkotter, A.; Reuther, E.; Watson, M. D.;
€
Severin, N.; Mullen, K.; Rabe, J. P. Adv. Mater. 2006, 18, 1317e1321; (c) Yasuda, T.;
Shimizu, T.; Liu, F.; Ungar, G.; Kato, T. J. Am. Chem. Soc. 2011, 133, 13437e13444.
6. He, G. S.; Tan, L. S.; Zheng, Q.; Prasad, P. N. Chem. Rev. 2008, 108, 1245e1330.
7. Marder, R. Chem. Commun. 2006, 131e134.
8. Pawlicki, M.; Collins, H. A.; Denning, R. G.; Anderson, H. L. Angew. Chem., Int. Ed.
2009, 48, 3244e3266.
9. Kim, H. M.; Cho, B. R. Chem. Commun. 2009, 153e164.
Some examples of the open-aperture Z-scan traces of the
compounds studied are shown in Figs. S1eS6. At each wavelength,
the Z-scan measurements were repeated four times or more with
different incident powers in the range of 0.01e0.40 mW, corre-
sponding to I0 of 3e140 GW cmꢂ2 with Rayleigh ranges zR of
5e10 mm depending on the wavelength and the optical setup. Each
set of Z-scan traces with different I0 was analyzed by global fitting
procedure with theoretical model of transmittance of temporal and
spatial Gaussian pulses through a TPA media with saturable
absorption.40 In the global fitting procedure, Rayleigh range zR, TPA
10. (a) Hales, J. M.; Matichak, J.; Bredas, J. L.; Perry, J. W.; Mader, S. R. Science 2010,
327, 1485e1488; (b) Haque, S. A.; Nelson, J. Science 2010, 327, 1466e1467.
11. Albota, M.; Beljonne, D.; Bredas, J.-L.; Ehrlich, J. E.; Fu, J.-Y.; Heikal, A. A.; Hess, S.
ꢁ
E.; Kogej, T.; Levin, M. D.; Marder, S. R.; McCord-Maughon, D.; Perry, J. W.;
€
Rockel, H.; Rumi, M.; Subramaniam, G.; Webb, W. W.; Wu, X.-L.; Xu, C. Science
1998, 281, 1653e1656.
12. (a) Drobizhev, M.; Karotki, A.; Rebane, A.; Spangler, C. W. Opt. Lett. 2001, 26,
1081e1083; (b) Cho, B. R.; Son, K. H.; Lee, S. H.; Song, Y. S.; Lee, Y. K.; Jeon, S. J.;
Choi, J. H.; Lee, H.; Cho, M. J. Am. Chem. Soc. 2001, 123, 10039e10045; (c) Pond,
ꢁ
S. J. K.; Rumi, M.; Levin, M. D.; Parker, T. C.; Beljonne, D.; Day, M. W.; Bredas,
J.-L.; Marder, S. R.; Perry, J. W. J. Phys. Chem. A 2002, 106, 11470e11480; (d) Lin,
T. C.; He, G. S.; Prasad, P. N.; Tan, L. S. J. Mater. Chem. 2004, 14, 982e991; (e)
Porres, L.; Mongin, O.; Katan, C.; Charlot, M.; Pons, T.; Mertz, J.; Blanchard-
Desce, M. Org. Lett. 2004, 6, 47e50; (f) Drobizhev, M.; Stepanenko, Y.; Dzenis, Y.;
Karotki, A.; Rebane, A.; Taylor, P. N.; Anderson, H. L. J. Am. Chem. Soc. 2004, 126,
coefficient a
(2), and saturation intensity IS were treated as global
fitting parameters. The best fit curves are also shown in Fig. S1eS6
with solid curves. For TPHAT-C-TPA (Figs. S1 and S5), TPHT-N-TPA
(Fig. S2), and TPHAT-C-ETPA (Figs. S3 and S6), saturable absorp-
tion was necessary to obtain reasonable curve fit, while it was not
for TPHAT-C-tBu (Fig. S4).
ꢀ
15352e15353; (g) Katan, C.; Terenziani, F.; Mongin, O.; Werts, M. H. V.; Porres,
L.; Pons, T.; Mertz, J.; Tretiak, S.; Blanchard-Desce, M. J. Phys. Chem. A 2005, 109,
3024e3037; (h) Le Droumaguet, C.; Mongin, O.; Werts, M. H. V.; Blanchard-
Desce, M. Chem. Commun. 2005, 2802e2804; (i) Kato, S.; Matsumoto, T.;
Shigeiwa, M.; Gorohmaru, H.; Maeda, S.; Ishi-i, T.; Mataka, S. Chem.dEur. J.
2006, 12, 2303e2317; (j) Bhaskar, A.; Guda, R.; Haley, M. M.; Goodson, T., III. J.
Am. Chem. Soc. 2006, 128, 13972e13973; (k) Chung, S.-J.; Zheng, S.; Odani, T.;
Beverina, L.; Fu, J.; Padilha, L. A.; Biesso, A.; Hales, J. M.; Zhan, X.; Schmidt, K.;
Ye, A.; Zojer, E.; Barlow, S.; Hagan, D. J.; Van Stryland, E. W.; Yi, Y.; Shuai, Z.;
With the a
(2) obtained from the curve fits, TPA cross section was
calculated with the convention, s(2)¼hn a(2)/N, where h
n is the
photon energy of the incident laser pulse and N is the number
density calculated from molar concentration of the sample
solutions.
ꢁ
Pagani, G. A.; Bredas, J. L.; Perry, J. W.; Marder, S. R. J. Am. Chem. Soc. 2006, 128,
14444e14445; (l) Williams-Harry, M.; Bhaskar, A.; Ramakrishna, G.; Goodson,
T., III; Imamura, M.; Mawatari, A.; Nakao, K.; Enozawa, H.; Nishinaga, T.; Iyoda,
M. J. Am. Chem. Soc. 2008, 130, 3252e3253; (m) Dy, J.; Ogawa, K.; Kamada, K.;
Ohta, K.; Kobuke, Y. Chem. Commun. 2008, 3411e3413; (n) Lin, C. C.; Velusamy,
M.; Chou, H. H.; Lin, J. T.; Chou, P. T. Tetrahedron 2010, 66, 8629e8634; (o)
Cheng, J. Z.; Lin, C. C.; Chou, P. T.; Chaskar, A.; Wong, K. T. Tetrahedron 2011, 67,
Acknowledgements
ꢁ
ꢁ
ꢁ
ꢂ
734e739; (p) Hrobarikova, V.; Hrobarik, P.; Gajdos, P.; Fitilis, I.; Fakis, M.;
We thank Mr. Tomoyuki Ishikawa (Fukuoka Industrial Technol-
ogy Center) for the MALDI-TOF mass spectrometry measurement.
This work was partially supported by Tokuyama Science Founda-
tion, Yoshida Foundation for the Promotion of Learning and Edu-
cation, and by Grant-in-Aid for Scientific Research from the
Ministry of Education, Science, Culture, Sports, and Technology of
Japan (No. 22550132).
ꢁ
Persephonis, P.; Zahradník, P. J. Org. Chem. 2010, 75, 3053e3068; (q) Hrobarik,
P.; Hrobarikova, V.; Sigmundova, I.; Zahradník, P.; Fakis, M.; Polyzos, I.; Perse-
ꢁ
ꢁ
ꢁ
phonis, P. J. Org. Chem. 2011, 76, 8726e8736.
13. (a) He, G. S.; Bhawalkar, J. D.; Zhao, C. F.; Prasad, P. N. Appl. Phys. Lett. 1995, 67,
€
2433e2435; (b) Ehrlich, J. E.; Wu, X. L.; Lee, I. Y. S.; Hu, Z. Y.; Rockel, H.; Marder,
S. R.; Perry, J. W. Opt. Lett. 1997, 22, 1843e1845; (c) He, G. S.; Lin, T. C.; Prasad, P.
N.; Cho, C. C.; Yu, L. J. Appl. Phys. Lett. 2003, 82, 4717e4719.
14. (a) Maruo, S.; Nakamura, O.; Kawata, S. Opt. Lett. 1997, 22, 132e134; (b)
Cumpston, B. H.; Ananthavel, S. P.; Barlow, S.; Dyer, D. L.; Ehrlich, J. E.; Erskine,
L. L.; Heikal, A. A.; Kuebler, S. M.; Lee, I. Y. S.; McCord-Maughon, D. M.; Qin, J.;
€
Rockel, H.; Rumi, M.; Wu, X.-L.; Marder, S. R.; Perry, J. W. Nature 1999, 398,
Supplementary data
51e54.
15. (a) Parthenopoulos;, D. A.; Rentzepis, P. M. Science 1989, 245, 843e845; (b)
Kawata, S.; Kawata, Y. Chem. Rev. 2000, 100, 1777e1788.
This material contains the details of open-aperture Z-scan
traces, 1H NMR spectra, MALDI-TOF-MS spectra, and dynamic light
scattering. Supplementary data associated with this article can be
most important compounds described in this article.
16. (a) Denk, W.; Strickler, J. H.; Webb, W. W. Science 1990, 248, 73e76; (b) Gao, Y.
H.; Wu, J. Y.; Li, Y.; Sun, P. P.; Zhou, H. P.; Yang, J. X.; Zhang, S. Y.; Jin, B. K.; Tian,
Y. P. J. Am. Chem. Soc. 2009, 131, 5208e5213; (c) Parthasarathy, V.; Fery-Forgues,
S.; Campioli, E.; Recher, G.; Terenziani, F.; Blanchard-Desce, M. Small 2011, 7,
3219e3229.
17. (a) Frederiksen, P. K.; Jørgensen, M.; Ogilby, P. M. J. Am. Chem. Soc. 2001, 123,
1215e1221; (b) Gao, D.; Agayan, R. R.; Xu, H.; Philbert, M. A.; Kopelman, R. Nano
Lett. 2006, 6, 2383e2386.
18. Kamada, K.; Ohta, K.; Iwase, Y.; Kondo, K. Chem. Phys. Lett. 2003, 372, 386e393.
19. Ohta, K.; Kamada, K. J. Chem. Phys. 2006, 124, 124303-1e124303-11.
20. (a) Kamada, K.; Tanamura, Y.; Ueno, K.; Ohta, K.; Misawa, H. J. Phys. Chem. C
2007, 111, 11193e11198; (b) Suzuki, Y.; Tenma, Y.; Nishioka, Y.; Kamada, K.;
Ohta, K.; Kawamata, J. J. Phys. Chem. C 2011, 115, 20653e20661.
References and notes
€
1. (a) Wurthner, F. Chem. Commun. 2004,1564e2157; (b) Hoeben, F. J. M.; Jonkheijm,
W.; Meijer, E. W.; Schenning, A. P. H. J. Chem. Rev. 2005, 105, 1491e1546; (c)
Schenning, A. P. H. J.; Meijer, E. W. Chem. Commun. 2005, 3245e3258; (d)