Molecular Tectonics
A R T I C L E S
dimensional network in which each tecton forms a total of 16
hydrogen bonds with eight neighbors. About 45% of the volume
is available for including guests, which lie in parallel channels
and can be exchanged in single crystals or even partly removed
without loss of crystallinity.
In many ways, such porous molecular networks are strikingly
similar to zeolites, and they may find analogous applications
in separation, catalysis, and other areas of technology. However,
zeolitic networks are anionic, whereas porous molecular net-
works that have been studied so far have rarely carried a net
charge.15,18 We have now synthesized tetraphenylborate 2, which
is a charged analogue of tetraphenylmethane 1, and we have
(13) For other recent studies of crystal engineering using molecules designed
to associate by hydrogen bonding, see: Uemura, K.; Kitagawa, S.; Fukui,
K.; Saito, K. J. Am. Chem. Soc. 2004, 126, 3817. Sada, K.; Inoue, K.;
Tanaka, T.; Tanaka, A.; Epergyes, A.; Nagahama, S.; Matsumoto, A.;
Miyata, M. J. Am. Chem. Soc. 2004, 126, 1764. Maspoch, D.; Domingo,
N.; Ruiz-Molina, D.; Wurst, K.; Tejada, J.; Rovira, C.; Veciana, J. J. Am.
Chem. Soc. 2004, 126, 730. Baudron, S. A.; Avarvari, N.; Canadell, E.;
Auban-Senzier, P.; Batail, P. Chem. Eur. J. 2004, 10, 4498. Angeloni, A.;
Crawford, P. C.; Orpen, A. G.; Podesta, T. J.; Shore, B. J. Chem. Eur. J.
2004, 10, 3783. Murata, T.; Morita, Y.; Fukui, K.; Sato, K.; Shiomi, D.;
Takui, T.; Maesato, M.; Yamochi, H.; Saito, G.; Nakasuji, K. Angew. Chem.,
Int. Ed. 2004, 43, 6343. Soldatov, D. V.; Moudrakovski, I. L.; Ripmeester,
J. A. Angew. Chem., Int. Ed. 2004, 43, 6308. Du, Y.; Creighton, C. J.;
Tounge, B. A.; Reitz, A. B. Org. Lett. 2004, 6, 309. Bhogala, B. R.;
Vangala, V. R.; Smith, P. S.; Howard, J. A. K.; Desiraju, G. R. Cryst.
Growth Des. 2004, 4, 647. Balasubramaniam, V.; Wong, L. G. J.; Vittal,
J. J.; Valiyaveettil, S. Cryst. Growth Des. 2004, 4, 553. Dale, S. H.;
Elsegood, M. R. J.; Coombs, A. E. L. CrystEngComm 2004, 6, 328. Vinodu,
M.; Goldberg, I. CrystEngComm 2004, 6, 215. Aakero¨y, C. B.; Desper, J.;
Helfrich, B. A. CrystEngComm 2004, 6, 19. Alshahateet, S. F.; Nakano,
K.; Bishop, R.; Craig, D. C.; Harris, K. D. M.; Scudder, M. L. CrystEng-
Comm 2004, 6, 5. Brown, R. J.; Camarasa, G.; Griffiths, J.-P.; Day, P.;
Wallis, J. D. Tetrahedron Lett. 2004, 45, 5103. Pedireddi, V. R.;
SeethaLekshmi, N. Tetrahedron Lett. 2004, 45, 1903. Martin, S. M.;
Yonezawa, J.; Horner, M. J.; Macosko, C. W.; Ward, M. D. Chem. Mater.
2004, 16, 3045. Kumar, D. K.; Jose, D. A.; Dastidar, P.; Das, A. Chem.
Mater. 2004, 16, 2332. Barton, O. G.; Schmidtmann, M.; Mu¨ller, A.;
Mattay, J. New J. Chem. 2004, 28, 1335. Shimizu, L. S.; Hughes, A. D.;
Smith, M. D.; Davis, M. J.; Zhang, B. P.; zur Loye, H.-C.; Shimizu, K. D.
J. Am. Chem. Soc. 2003, 125, 14972. Ouyang, X.; Fowler, F. W.; Lauher,
J. W. J. Am. Chem. Soc. 2003, 125, 12400. Kobayashi, K.; Sato, A.;
Sakamoto, S.; Yamaguchi, K. J. Am. Chem. Soc. 2003, 125, 3035.
Rakotondradany, F.; Whitehead, M. A.; Lebuis, A.-M.; Sleiman, H. F.
Chem. Eur. J. 2003, 9, 4771. Jagadish, B.; Carducci, M. D.; Bosshard, C.;
Gu¨nter, P.; Margolis, J. I.; Williams, L. J.; Mash, E. A. Cryst. Growth
Des. 2003, 3, 811. Bhogala, B. R.; Nangia, A. Cryst. Growth Des. 2003,
3, 547. Olenik, B.; Smolka, T.; Boese, R.; Sustmann, R. Cryst. Growth
Des. 2003, 3, 183. Kitamura, M.; Nakano, K. Cryst. Growth Des. 2003, 3,
25. Ma, B.-Q.; Coppens, P. Chem. Commun. 2003, 2290. Yagai, S.; Karatsu,
T.; Kitamura, A. Chem. Commun. 2003, 1844. Walsh, R. D. B.; Bradner,
M. W.; Fleischman, S.; Morales, L. A.; Moulton, B.; Rodr´ıguez-Hornedo,
R.; Zaworotko, M. J. Chem. Commun. 2003, 186. Blay, G.; Ferna´ndez, I.;
Pedro, J. R.; Ruiz-Garc´ıa, R.; Mun˜oz, M. C.; Cano, J.; Carrasco, R. Eur.
J. Org. Chem. 2003, 1627. Braga, D.; Polito, M.; Bracaccini, M.; D’Addario,
D.; Tagliavini, E.; Sturba, L. Organometallics 2003, 22, 2142. Hosseini,
M. W. Coord. Chem. ReV. 2003, 240, 157. Roesky, H. W.; Andruh, M.
Coord. Chem. ReV. 2003, 236, 91. Ermer, O.; Kusch, A.; Ro¨bke, C. HelV.
Chim. Acta 2003, 86, 922. Arora, K. K.; Pedireddi, V. R. J. Org. Chem.
2003, 68, 9177. Wen, J.-F.; Hong, W.; Yuan, K.; Mak, T. C. W.; Wong,
H. N. C. J. Org. Chem. 2003, 68, 8918. Moon, K.; Chen, W.-Z.; Ren, T.;
Kaifer, A. E. CrystEngComm 2003, 5, 451. Burke, N. J.; Burrows, A. D.;
Mahon, M. F.; Pritchard, L. S. CrystEngComm 2003, 5, 355. Pe´rez, C.;
Rodr´ıguez, M. L.; Foces-Foces, C.; Pe´rez-Herna´ndez, N.; Pe´rez, R.; Mart´ın,
J. D. Org. Lett. 2003, 5, 641. Shan, N.; Bond, A. D.; Jones, W. New J.
Chem. 2003, 27, 365. Kobayashi, N.; Naito, T.; Inabe, T. Bull. Chem. Soc.
Jpn. 2003, 76, 1351.
+
Figure 1. View of the structure of crystals of tetraphenylborate 2·PPh4
grown from DMSO/toluene, showing a central tecton (red) surrounded by
its six hydrogen-bonded neighbors (yellow, green, and blue). Hydrogen
bonds appear as broken lines, and all guests are omitted for clarity. The
four diaminotriazine groups of the central tecton form a total of 16 hydrogen
bonds according to all three standard motifs I-III. Two of the neighbors
(yellow) each form two hydrogen bonds with the central tecton according
to motif I, and two other neighbors (green) each form two hydrogen bonds
according to motif III. Two diaminotriazine groups of each of the remaining
two neighbors (blue) interact simultaneously with two arms of the central
tecton according to motif II.
found that its salts crystallize to generate an anionic hydrogen-
bonded network with special properties of porosity and selective
ion exchange. Moreover, the behavior of tecton 2 suggests new
strategies of potentially general value for creating molecular
crystals by design.
Results and Discussion
Synthesis, Crystallization, and Structure of the Tetra-
phenylphosphonium Salt of Tetraphenylborate 2. Salts of
anionic tecton 2 were made in the following way. Monolithiation
of 1,4-diiodobenzene (BuLi, 1 equiv, -10 °C), followed by the
addition of BF3·O(C2H5)2 (0.2 equiv, 25 °C), provided lithium
tetrakis(4-iodophenyl)borate (3) in 85% yield. Subsequent Pd-
catalyzed cyanation (KCN, Pd(OOCCH3)2)19 gave an 85% yield
of potassium tetrakis(4-cyanophenyl)borate (4). Intermediate 4
was then converted in 87% yield into the sodium salt of anionic
tecton 2 by reaction with dicyandiamide under standard condi-
tions,20 and the tetraphenylphosphonium salt and other salts were
prepared in quantitative yield from the sodium salt by cation
exchange.
Colorless single crystals of tecton 2·PPh4+ suitable for X-ray
diffraction could be grown from DMSO/toluene. The crystals
proved to belong to the monoclinic space group P2/n and to
correspond to an inclusion compound of approximate composi-
tion 2·PPh4+·5DMSO.21 Views of the structure appear in Figures
(14) Hosseini, M. W. CrystEngComm 2004, 6, 318.
(15) Kobayashi, N.; Naito, T.; Inabe, T. CrystEngComm 2004, 6, 189. Lam,
C.-K.; Mak, T. C. W. Chem. Commun. 2003, 2660. Ma, B.-Q.; Sun, H.-L.;
Gao, S. Chem. Commun. 2003, 2164. Gale, P. A.; Navakhun, K.; Camiolo,
S.; Light, M. E.; Hursthouse, M. B. J. Am. Chem. Soc. 2002, 124, 11228.
Zhu, H.-F.; Fan, J.; Okamura, T.; Sun, W.-Y.; Ueyama, N. Chem. Lett.
2002, 898. Braga, D.; Maini, L.; Grepioni, F.; Elschenbroich, C.; Paganelli,
F.; Schiemann, O. Organometallics 2001, 20, 1875. Ermer, O.; Lindenberg,
L. Chem. Ber. 1990, 123, 1111.
(16) For discussions of interpenetration in networks, see: Batten, S. R.
CrystEngComm 2001, 18, 1. Batten, S. R.; Robson, R. Angew. Chem., Int.
Ed. 1998, 37, 1460.
(17) An updated list of examples of interpenetration is available on the web
nash.edu.au).
(19) Takagi, K.; Okamoto, T.; Sakakibara, Y.; Ohno, A.; Oka, S.; Hayama, N.
Bull. Chem. Soc. Jpn. 1976, 49, 3177.
(20) Simons, J. K.; Saxton, M. R. Organic Syntheses; Wiley: New York, 1963;
Collect. Vol. IV, p 78.
(21) The composition was estimated by 1H NMR spectroscopy of dissolved
samples. The amount of any H2O included could not be determined
accurately.
(18) For a review of ionic self-assembly, see: Faul, C. F. J.; Antonietti, M.
AdV. Mater. 2003, 15, 673.
9
J. AM. CHEM. SOC. VOL. 127, NO. 16, 2005 5911