Figure 2. Partial 1H NMR spectra (500 MHz, CD3CN, 5 mM) of
OX at 30 (a), 60 (b), and 70 °C (c).
Figure 1. Reversible interconversion of a spiropyran (SP) and a
merocyanine (ME) and of an oxazine (OX) and an indolium (IN).
onds.18 The thermal transformation of the resulting mero-
cyanine (e.g., ME in Figure 1) back to the original spiropyran
is slowed significantly by a necessary trans f cis reisomer-
ization step. For example, ME switches back to SP in
minutes with a rate constant of ca. 25 × 10-4 s-1 in MeCN
at 25 °C.18f
or within rigid matrixes11,12 can reproduce logic functions
relying on the interplay of optical signals. In particular, we
have implemented molecular logic gates7,12 on the basis of
the reversible isomerization of spiropyrans.13 At the present
stage of their development, however, our rudimentary
molecular switches suffer at least two major limitations. The
thermal reisomerization of our spiropyran is relatively slow.7f
Thus, the output level can only be restored after a delay of
several minutes, once the optical input is turned off.
Furthermore, our spiropyran tolerates a limited number of
switching cycles.12b
The photoinduced isomerization of spiropyrans (e.g., SP
in Figure 1) involves two consecutive steps.13b,c,f Upon
ultraviolet excitation, the [C-O] bond at the spirocenter
cleaves in picoseconds.14-17 Then, the adjacent [CdC] bond
switches from a cis to a trans configuration in microsec-
On the basis of these observations, we have designed the
[1,3]oxazine OX (Figure 1). In analogy to SP, ultraviolet
irradiation of OX should induce the cleavage of the [C-O]
bond, involving the tertiary carbon of the indoline fragment,
with the formation of a p-nitrophenolate chromophore. The
resulting indolium IN (Figure 1) lacks the central double
bond of ME. Thus, the rate of the thermal transformation of
IN back into OX should not be limited by the relatively slow
trans f cis reisomerization associated with ME.
We have synthesized OX in two steps (Figure S1,
Supporting Information) with an overall yield of 49%. The
first step involves the condensation of phenylhydrazine and
i-propylphenyl ketone in the presence of p-toluenesulfonic
acid. The resulting 2-phenyl-3,3′-dimethyl-3H-indole is then
reacted with 2-chloromethyl-4-nitrophenol to produce the
target compound OX, after treatment with aqueous potassium
hydroxide.
(7) (a) Raymo, F. M.; Giordani, S. J. Am. Chem. Soc. 2001, 123, 4651-
4652. (b) Raymo, F. M.; Giordani, S. Org. Lett. 2001, 3, 1833-1836. (c)
Raymo, F. M.; Giordani, S. Org. Lett. 2001, 3, 3475-3478. (d) Raymo, F.
M.; Giordani, S. J. Am. Chem. Soc. 2002, 124, 2004-2007. (e) Raymo, F.
M.; Giordani, S. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4941-4944. (f)
Raymo, F. M.; Giordani, S.; White, A. J. P.; Williams, D. J. J. Org. Chem.
2003, 68, 4158-4169. (g) Giordani, S.; Cejas, M. A.; Raymo, F. M.
Tetrahedron, 2004, 60, 10973-10981.
The chiral center of OX imposes two distinct environments
on the two methyl groups. Consistently, the 1H NMR
spectrum (spectrum a in Figure 2), recorded in CD3CN at
30 °C, reveals two distinct singlets for the two sets of methyl
protons. Upon warming the solution, these signals broaden
(8) Tian, H.; Qin, B.; Yao, R.; Zhao, X.; Yang, S. AdV. Mater. 2003,
15, 2104-2107.
(9) (a) Guo, X.; Zhang, D.; Zhou, Y.; Zhu, D. Chem. Phys. Lett. 2003,
375, 484-489. (b) Guo, X.; Zhang, D.; Zhou, Y.; Zhu, D. J. Org. Chem.
2003, 68, 5681-5687. (c) Guo, X.; Zhang, D.; Wang, T.; Zhu, D. Chem.
Commun. 2003, 914-915. (d) Guo, X.; Zhang, D.; Zhu, D. AdV. Mater.
2004, 16, 125-130. (e) Guo, X.; Zhang, D.; Zhang, G.; Zhu, D. J. Phys.
Chem. B 2004, 108, 11942-11945. (f) Gou, X.; Zhang, D.; Tao, H.; Zhu,
D. Org. Lett. 2004, 6, 2491-2494.
(14) (a) Krysanov, S. A.; Alfimov, M. V. Chem. Phys. Lett. 1982, 91,
77-80. (b) Krysanov, S. A.; Alfimov, M. V. Laser Chem. 1984, 4, 129-
138.
(10) Andre´asson, J.; Kodis, G.; Terazono, Y.; Liddell, P. LA.; Bandyo-
padhyay, S.; Mitchell, R. H.; Moore, T. A.; Moore, A. L.; Gust, D. J. Am.
Chem. Soc. 2004, 126, 15926-15927.
(11) Sasaki, K.; Nagamura, T. J. Appl. Phys. 1998, 83, 2894-2900.
(12) (a) Giordani, S.; Raymo, F. M. Org. Lett. 2003, 5, 3559-3562. (b)
Tomasulo, M.; Giordani, S.; Raymo, F. M. AdV. Funct. Mater. 2005, 15,
in press.
(15) Kalisky, Y.; Orlowski, T. E.; Williams, D. J. J. Phys. Chem. 1983,
87, 5333-5338.
(16) Ito, T.; Hiramatsu, M.; Hirano, I.; Ohtani, H. Macromolecules 1990,
23, 4528-4532.
(17) Ernsting, N. P.; Arthen-Engeland, T. J. Phys. Chem. 1991, 95,
5502-5509.
(13) (a) Bertelson, R. C. in ref 1b, p 45-431. (b) Kholmanskii, A. S.;
Dyumanev, K. M. Russ. Chem. ReV. 1987, 56, 136-151. (c) Guglielmetti,
R. in ref 1c, pp 314-466 and 855-878. (d) Bertelson, R. C. in ref 1d, vol.
1, p 11-83. (e) Berkovic, G.; Krongauz, V.; Weiss, V. in ref 1e, p 1741-
1754. (f) Tamai, N.; Miyasaka, H. in ref 1e, p 1875-1890. (g) Minkin, V.
I. Chem. ReV. 2004, 104, 2751-2776.
(18) (a) Go¨rner, H.; Atabekyan, L. S.; Chibisov, A. K. Chem. Phys. Lett.
1996, 260, 59-64. (b) Go¨rner, H. Chem. Phys. 1997, 222, 315-329. (c)
Chibisov, A. K.; Go¨rner, H. J. Photochem. Photobiol. A 1997, 105, 261-
267. (d) Chibisov, A. K.; Go¨rner, H. J. Phys. Chem. A 1997, 101, 4305-
4312. (e) Go¨rner, H. Chem. Phys. Lett. 1998, 282, 381-390. (f) Go¨rner,
H. Phys. Chem. Chem. Phys. 2001, 3, 416-423.
1110
Org. Lett., Vol. 7, No. 6, 2005