C O M M U N I C A T I O N S
Table 2. Friedel-Crafts Alkylation of Indoles 14-17 with Various
R′-Hydroxy Enones 7 Catalyzed by Complex 12a
as 27 and 28, in high yields and excellent enantioselectivities.
Moreover, in these transformations, acetone is the only byproduct
formed, an additional aspect of the approach that is of practical
interest. In conclusion, R′-hydroxy enones 7 in combination with
commercially available bis(oxazoline)-Cu(OTf)2 catalysts signifi-
cantly expand the enantioselective Friedel-Crafts reaction.
Acknowledgment. We thank The University of the Basque
Country (UPV/EHU) and Ministerio de Educacio´n y Ciencia (MEC,
Spain) for financial support. A grant to B.G.K. from UPV/EHU is
acknowledged. This work is dedicated to Dr. Cecilia Sarasola.
entry
indole
enone 7, R
T,
°
C
time, h
product
yield, %b
ee, %c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
14
a
PhCH2CH2
0
25
reflux
0
25
25
reflux
25
25
0
3
3
18a
88
85
85
85
44g
68
81
32i
80
95
65i
89
96
86
95d
94e
98
Supporting Information Available: Complete experimental pro-
1
cedures, H and 13C spectra, HPLC chromatograms, crystallographic
0.5
12
48
24
4
36
24
48
3
b
c
CH3(CH2)5
(CH3)2CH
18b
18c
96f
85
data for S-2 (CIF), and an ORTEP diagram. This material is available
93h
95
References
d
c-C6H11
18d
85
96h
83j
98
(1) Olah, G. A.; Kishnamurti, R.; Prakash, G. K. S. In ComprehensiVe Organic
Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991;
Vol. 3, pp 293-339.
h
i
a
a
a
4-Cl-C6H4
CH3
PhCH2CH2 25
PhCH2CH2 25
PhCH2CH2 25
18h
18i
19a
20a
21a
0
(2) For a review, see: (a) Bandini, M.; Melloni, A.; Umani-Ronchi, A. Angew.
Chem., Int. Ed. 2004, 43, 550-556. See also: (b) Jørgensen, K. A.
Synthesis 2003, 1117-1125.
15
16
17
2
2
2
93
97
98
(3) (a) Paras, N. A.; MacMillan, D. W. C. J. Am. Chem. Soc. 2001, 123,
4370-4371. (b) Austin, J. F.; MacMillan, D. W. C. J. Am. Chem. Soc.
2002, 124, 1172-1173. (c) Paras, N. A.; MacMillan, D. W. C. J. Am.
Chem. Soc. 2002, 124, 7894-7895.
a Reactions conducted at 0.5 mmol scale and 0.25 M substrate concentra-
tion. Mole ratio of indole:7:cat is 2:1:0.1. b Yield of isolated product after
column chromatography. c Determined by chiral HPLC. d Reaction con-
ducted at 10 mmol scale. e Using 5 mol % catalyst loading. f Using 2 mol
% catalyst loading. g Only 25% of unreacted enone 7c recovered. h Using
catalyst 13. i Yield not optimized. j Using 30 mol % cat 13.
(4) Jensen, K. B.; Thorhauge, J.; Mazell, R.-G.; Jørgensen, K. A. Angew.
Chem., Int. Ed. 2001, 40, 160-163.
(5) (a) Zhuang, W.; Hausen, T.; Jørgensen, K. A. Chem. Commun. 2001, 347-
348. (b) Zhou, J.; Tang, Y. J. Am. Chem. Soc. 2002, 124, 9030-9031.
(c) Zhou, J.; Tang, Y. Chem. Commun. 2004, 432-433. (d) Zhou, J.; Ye,
M.-C.; Huang, Z.-Z.; Tang, Y. J. Org. Chem. 2004, 69, 1309-1320.
(6) Evans, D. A.; Scheidt, K. A.; Frandrick, K. R.; Lam, H. W.; Wu, J. J.
Am. Chem. Soc. 2003, 125, 10780-10781.
Scheme 2. Elaboration of Adducts into Enantioenriched Pyrrole-
and Indole-Substituted Aldehydes, Carboxylic Acids, and Ketones
(7) (a) Bandini, M.; Fagioli, P.; Garavelli, M.; Melloni, A.; Trigari, V.; Umani-
Ronchi, A. J. Org. Chem. 2004, 69, 7511-7518. (b) Bandini, M.; Melloni,
A.; Tommasi, S.; Umani-Ronchi, A. HelV. Chim. Acta 2003, 86, 3753-
3763.
(8) Widely used, chelating N-enoyl-2-oxazolidinones in combination with Cu-
(II)-BOX catalysts seemed to be totally ineffective; for example, unaltered
starting materials are recovered after 2 days of stirring a mixture of
N-methyl pyrrole and N-crotonyl-2-oxazolidinone in the presence of 10
mol % Cu(II)-t-BOX catalyst.
(9) Palomo, C.; Oiarbide, M.; Garc´ıa, J. M.; Gonza´lez, A.; Arceo, E. J. Am.
Chem. Soc. 2003, 125, 13942-13943.
(10) Palomo, C.; Oiarbide, M.; Halder, R.; Kelso, M.; Go´mez-Bengoa, E.;
Garc´ıa, J. M. J. Am. Chem. Soc. 2004, 126, 9188-9189.
(11) Hypothetically, the 1,4-metal arrangement resulting from the coordination
of templates 2 and 4 with the catalyst is advantageous over the 1,5-metal
arrangement encountered in other typical bidentate templates, such as 3.
Also, see ref 8.
(12) (a) Sundberg, R. D. Pyrroles and Their Benzo Derivatives: Synthesis and
Applications. In ComprehensiVe Heterocyclic Chemistry; Katrizky, A. R.,
Rees, C. W., Eds.; Pergamon: Oxford, 1984, Vol. 4, pp 313-376. (b)
Saxton, J. E. Nat. Prod. Rep. 1997, 14, 559-590. (c) Toyota, M.; Ihara,
N. Nat. Prod. Rep. 1998, 15, 327-340.
(13) Other solvents, such as THF, Et2O, or toluene, tested using catalyst 12
led to slightly lower selectivity, while the reaction did not proceed at all
in acetonitrile. See the Supporting Information for details.
(14) Enone/yield of dialkylated 8: 7b/4%, 7d/14%, 7f/8% (See SI for details).
(15) For enhancement of enantiomeric excess by ligand distortion, see: (a)
Denmark, S. E.; Stiff, C. M. J. Org. Chem. 2000, 65, 5875-5878. (b)
Lipkowitz, K. B.; Schefzick, S.; Avnir, D. J. Am. Chem. Soc. 2001, 123,
6710-6711.
The potential of this catalytic approach is best demonstrated by
the versatile elaboration of adducts through oxidative cleavage of
the ketol moiety. For example, adducts 10a,c and 18a, after
sequential reduction and oxidative diol cleavage, afforded aldehydes
22, 23, and 24, which were characterized as the corresponding
alcohols. Alternatively, 18 could be transformed directly into
carboxylic acids and, hence, esters 25 and 26 of high enantiomeric
purity.18 Of importance, a sequential alkyllithium addition to the
carbonyl group in 18, followed by treatment with NaIO4, constituted
a practical entry to the otherwise elusive ketone derivatives, such
(16) Under the conditions reported, no reaction was observed between enone
7a and other types of arenes tested, such as anisole and 3-dimethylami-
noanisole.
(17) (a) Johnson, J. S.; Evans, D. A. Acc. Chem. Res. 2000, 33, 325-335 and
references therein. (b) Thorhauge, J.; Roberson, M.; Hazell, R. G.;
Jørgensen, K. A. Chem.sEur. J. 2002, 8, 1888-1898.
(18) For assessment of the enantiomeric purity and the absolute configuration
of the products, see the Supporting Information.
JA0423217
9
J. AM. CHEM. SOC. VOL. 127, NO. 12, 2005 4155