Angewandte
Chemie
=
Scheme 4. Cleavage of product from A2 B1. R=n-C8H17.
=
2001, 5, 650; R. P. Sijbesma, E. W. Meijer, Chem. Commun.
products could be cleaved from the template, product A2 B1
was treated with an aqueous solution of NaOH. After
completion of the reaction, the insoluble residue was filtered,
and the acidified aqueous layer was extracted with CH2Cl2 to
yield the desired 8-hydroxyoct-5-enoic acid (Scheme 4).[16]
In conclusion, we have shown that a quadruply hydrogen-
bonded duplex can act as a sequence-specific template to
direct the cross-metathesis of different olefins that are
tethered to this duplex. These templated metathesis reactions
occur with extremely high selectivity, with no homodimeric
products observed. Compared to strategies that directly
tether two olefin units together, our approach has the
advantage of being combinatorial. By simply mixing the
complementary A and B strands, a large number of A·B
combinations were easily obtained. Thus, the combination
(mixing) of a group of five tethered olefins with another
group of five olefins lead to a total of 25 combinations. In
contrast, with covalently linked olefins, all 25 possibilities
have to first be synthesized before they can be tested.
Obviously, the number of combinations based on our
approach increases rapidly as the number of tethered olefins
increases. Coupled with NMR spectroscopic and mass spec-
trometric methods, our template-directing method can be
used to probe a large number of combinations that would
otherwise be difficult to examine based on previous methods.
After cleavage from the template, the desired products can be
easily obtained and the template can also be recycled. It is
envisaged that our current strategy will serve as a useful tool
to broaden the scope of cross-metathesis reactions. The
approach described here should also be generally applicable
to other types of bimolecular reactions.
2003, 5; C. A. Hunter, P. S. Jones, P. M. N. Tiger, S. Tomas, Chem.
Commun. 2003, 1642.
[2] B. Gong, Y. Yan, H. Q. Zeng, E. Skrzypczak-Jankunn, Y. W.
Kim, J. Zhu, H. Ickes, J. Am. Chem. Soc. 1999, 121, 5607; H.
Zeng, R. S. Miller, R. A. Flowers, B. Gong, J. Am. Chem. Soc.
2000, 122, 2635; X. W. Yang, S. Martinovic, R. D. Smith, B.
Gong, J. Am. Chem. Soc. 2003, 125, 9932.
[3] H. Q. Zeng, X. W. Yang, R. A. Flowers, B. Gong, J. Am. Chem.
Soc. 2002, 124, 2903.
[4] Z. Y. J. Zhan, J. D. Ye, X. Y. Li, D. G. Lynn, Curr. Org. Chem.
2001, 5, 885; Z. Y. Li, Z. Y. J. Zhan, R. Knipe, D. G. Lynn, J. Am.
Chem. Soc. 2002, 124, 746; Z. Y. J. Zhan, D. G. Lynn, J. Am.
Chem. Soc. 1997, 119, 12420.
[5] Z. J. Gartner, D. R. Liu, J. Am. Chem. Soc. 2001, 123, 6961; Z. J.
Gartner, M. W. Kanan, D. R. Liu, Angew. Chem. 2002, 114, 1874;
Angew. Chem. Int. Ed. 2002, 41, 1796; C. T. Calderone, J. Q. W.
Puckett, Z. J. Gartner, D. R. Liu, Angew. Chem. 2002, 114, 4278;
Angew. Chem. Int. Ed. 2002, 41, 4104; Z. J. Gartner, M. W.
Kanan, D. R. Liu, J. Am. Chem. Soc. 2002, 124, 10304; X. Y. Li,
D. R. Liu, J. Am. Chem. Soc. 2003, 125, 10188; X. Y. Li, Z. J.
Gartner, B. N. Tse, D. R. Liu, J. Am. Chem. Soc. 2004, 126, 5090.
[6] R. R. Schrock, J. S. Murdzek, G. C. Bazan, J. Robbins, M.
DiMare, M. OꢀRegan, J. Am. Chem. Soc. 1990, 112, 3875; G. C.
Baznan, J. H. Oskam, H. N. Cho, L. Y. Park, R. R. Schrock, J.
Am. Chem. Soc. 1991, 113, 6899.
[7] S. T. Nguyen, R. H. Grubbs, J. W. Ziller, J. Am. Chem. Soc. 1993,
115, 9858; P. Schwab, M. B. France, J. W. Ziller, R. H. Grubbs,
Angew. Chem. 1995, 107, 2179; Angew. Chem. Int. Ed. Engl.
1995, 34, 2039; P. Schwab, R. H. Grubbs, J. W. Ziller, J. Am.
Chem. Soc. 1996, 118, 100.
[8] For recent reviews, see: M. Schuster, S. Blechert, Angew. Chem.
1997, 109, 2124; Angew. Chem. Int. Ed. Engl. 1997, 36, 2036;
R. H. Grubbs, S. Chang, Tetrahedron 1998, 54, 4413; S. K.
Armstrong, J. Chem. Soc. Perkin Trans. 1 1998, 371; A. Furstner,
Angew. Chem. 2000, 112, 3140; Angew. Chem. Int. Ed. 2000, 39,
3012; R. Roy, S. K. Das, Chem. Commun. 2000, 519; T. M. Trnka,
R. H. Grubbs, Acc. Chem. Res. 2001, 34, 18.
[9] A. Furstner, K. Radkowski, J. Grabowski, C. Wirtz, R. Mynott, J.
Org. Chem. 2000, 65, 8758; I. M. Fellows, D. E. Kaelin, Jr., S. F.
Martin, J. Am. Chem. Soc. 2000, 122, 10781; A. B. Smith, C. M.
Adams, S. A. Kozmin, J. Am. Chem. Soc. 2001, 123, 990; P. A.
Evans, J. Cui, S. J. Gharpure, A. Polosukhin, H. R. Zhang, J. Am.
Chem. Soc. 2003, 125, 14702; A. Furstner, A. S. Castanet, K.
Radkowski, C. W. Lehmann, J. Org. Chem. 2003, 68, 1521; T.
Kawaguchi, N. Funamori, Y. Matsuya, H. Nemoto, J. Org. Chem.
2004, 69, 505; E. A. Couladouros, A. P. Mihou, E. A. Bouzas,
Org. Lett. 2004, 6, 977.
Received: August 24, 2004
Revised: October 5, 2004
Published online: January 20, 2005
À
Keywords: alkenes · C C coupling · hydrogen bonds ·
noncovalent interactions · template synthesis
.
[1] L. J. Prins, D. N. Reinhoudt, P. Timmerman, Angew. Chem. 2001,
113, 2446; Angew. Chem. Int. Ed. 2001, 40, 2382; D. C.
Sherrington, K. A. Taskinen, Chem. Soc. Rev. 2001, 30, 83;
S. C. Zimmerman, P. S. Corbin, Struct. Bonding (Berlin) 2000, 96,
63; C. Schmuck, W. Wienand, Angew. Chem. 2001, 113, 4493;
Angew. Chem. Int. Ed. 2001, 40, 4363; E. A. Archer, H. G. Gong,
M. J. Krische, Tetrahedron 2001, 57, 1139; B. Gong, Synlett 2001,
582; M. S. Cubberley, B. L. Iverson, Curr. Opin. Chem. Biol.
[10] T. Morita, B. R. Maughon, C. W. Bielawski, R. H. Grubbs,
Macromolecules 2000, 33, 6621; C. W. Bielawski, D. Benitez,
R. H. Grubbs, Science 2002, 297, 2041; C. W. Bielawski, D.
Benitez, R. H. Grubbs, J. Am. Chem. Soc. 2003, 125, 8424; R. H.
Angew. Chem. Int. Ed. 2005, 44, 1352 –1356
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1355