Phosphinic MMP Inhibitor RXP03
J. Phys. Chem. B, Vol. 114, No. 1, 2010 427
effort, a new synthetic methodology has been undressed, which
provided the four diastereoisomers of RXP03 in a large scale,
high yield, and high purity. Resolution of the Cbz-protected
aminophosphinic acid analogues of phenylalanine, Michael-type
addition to phenylpropyl acrylic acid ethyl ester, saponification,
and coupling with TrpNH2 provided the four isomers, by means
of recrystallization, based on the remarkable difference in
solubility of the four isomers of RXP03. This fact leads us to
examine theoretically the conformational differences of these
four isomers via computer simulations in the solvents used
experimentally.
Organic Chemistry, Special Account for Research Grants of
National Athens University (NKUA) and by the CEA (SIMO-
PRO).
Supporting Information Available: Figures showing cal-
culated radial distribution functions, ESP partial charges,
dihedral angle distributions, and time evolutions, tables showing
optimized geometries and fractional charges, an explanation of
the general considerations, a list of abbreviations, and detailed
experimental procedures. This material is available free of
The differences in solubility of the four RXP03 diastereoi-
somers in the used solvents were examined in terms of intra-
and intermolecular structure in order to provide information
regarding the influence of a possible conformation of the solutes
on their characteristic solvation process.
References and Notes
(1) Dive, V.; Georgiadis, D.; Matziari, M.; Makaritis, A.; Beau, F.;
Cuniasse, P.; Yiotakis, A. Cell. Mol. Life Sci. 2004, 61, 2010–2019.
(2) Cuniasse, P.; Devel, L.; Makaritis, A.; Beau, F.; Georgiadis, D.;
Matziari, M.; Yiotakis, A.; Dive, V. Biochimie 2005, 87, 393–402.
(3) Andarawewa, D. V., K. L.; Boulay, A.; Matziari, M.; Beau, F.;
Guerin, E.; Rousseau, B.; Yiotakis, A.; Rio, M. C. Int. J. Cancer 2001,
113, 775–781.
(4) Schechter, I.; Berger, A. Biochem. Biophys. Res. Commun. 1967,
27, 157–162.
(5) Georgiadis, D.; Beau, F.; Czarny, B.; Cotton, J.; Yiotakis, A.; Dive,
V. Circ. Res. 2003, 93, 148–154.
(6) Vassiliou, S.; Mucha, A.; Cuniasse, P.; Georgiadis, D.; Lucet-
Levannier, K.; Beau, F.; Kannan, R.; Murphy, G.; Knauper, V.; Rio, M. C.;
Basset, P.; Yiotakis, A.; Dive, V. J. Med. Chem. 1999, 42, 2610–2620.
(7) Schiodt, C. B.; Buchardt, J.; Terp, G. E.; Christensen, U.; Brink,
M.; Berger Larsen, Y.; Meldal, M.; Foged, N. T. Curr. Med. Chem. 2001,
8, 967–976.
(8) Georgiadis, D.; Vazeux, G.; Llorens-Cortes, C.; Yiotakis, A.; Dive,
V. Biochemistry 2000, 39, 1152–1155.
(9) Grembecka, J.; Mucha, A.; Cierpicki, T.; Kafarski, P. J. Med. Chem.
2003, 46, 2641–2655.
(10) Makaritis, A.; Georgiadis, D.; Dive, V.; Yiotakis, A. Chem.sEur.
Using QM calculations, the geometry of each isolated isomer
molecule was first optimized and then the corresponding charge
distribution was obtained. Further, the different solubility of the
examined diastereoisomers in EtOH and Et2O was investigated
by means of the molecular dynamics simulation of each
molecular system. The intermolecular structure between the
RXP03 diastereoisomers and the solvent molecules obtained
supports the experimentally found different solubilities among
the isomers. All of the calculated O-OEtOH and O-HEtOH RDFs
of O atoms of the RRS isomer exhibit high first peaks at very
short distances with the characteristic shape showing hydrogen
bonded behavior. The corresponding RDFs for the RSS isomer
are similar to each other except for the P2 position of O atom,
which shows that the EtOH molecules are almost absent at short
distances at this part of the isomer. The RRS isomer was found
to form about six HBs with the surrounding EtOH molecules,
distributed in all molecular positions that make this isomer
soluble. On the other hand, the RSS isomer forms only about
three HBs with EtOH but the P2 positions of the polar atoms
that potentially could form HBs with the solvent species are
not accessible to them due to the fact that they are protected by
the hydrophobic aromatic rings. In addition, the RRS isomer
exhibits higher solvent accessible surface in EtOH compared
with that for the RSS isomer. On the other hand, the SRS isomer
in Et2O has been found to form intramolecular HBs, while this
does not seem to be the case for the SSS isomer. More clearly,
the SRS isomer has its polar atoms protected from the nonpolar
solvent, leaving their hydrophilic aromatic and aliphatic exposed
to the nonpolar solvent. On the other hand, the SSS isomer does
not provide such a kind of configuration because in this molecule
its polar parts are protected from the solvent. As in the case of
RRS/RSS in EtOH, the soluble in Et2O SRS isomer has a higher
solvent accessible area. These findings might explain the fact
that the SRS isomer is soluble in Et2O while the SSS is not.
J. 2003, 9, 2079–2094.
(11) Buchardt, J.; Schiodt, C. B.; Krog-Jensen, C.; Delaisse, J. M.; Foged,
N. T.; Meldal, M. J. Comb. Chem. 2000, 96, 624–638.
(12) Dive, V.; Cotton, J.; Yiotakis, A.; Michaud, A.; Vassiliou, S.;
Jiracek, J.; Vazeaux, G.; Chauvet, M. T.; Cuniasse, P.; Corvol, P. Proc.
Natl. Acad. Sci. U.S.A. 1999, 96, 4330–4335.
(13) Jiracek, J.; Yiotakis, A.; Vincent, B.; Checler, F.; Dive, V. J. Biol.
Chem. 1996, 271, 19606–19611.
(14) Cursio, R.; Mari, B.; Louis, K.; Saint-Paul, M. C.; Rostagno, P.;
Giudicelli, J.; Bottero, V.; Anglard, P.; Yiotakis, A.; Dive, V.; Gugenheim,
J.; Auberger, P. FASEB J. 2002, 16, 93–95.
(15) Andarawewa, D. V., K. L.; Boulay, A.; Matziari, M.; Beau, F.;
Guerin, E.; Rousseau, B.; Yiotakis, A.; Rio, M. C. Int. J. Cancer 2001,
113, 775–781.
(16) Gall, A.; Ruff, M.; Kannan, R.; Cuniasse, P.; Yiotakis, A.; Dive,
V.; Rio, M.; Basset, P.; Moras, D. J. Mol. Biol. 2001, 307, 577–586.
(17) Baylis, E. K.; Campbell, C. D.; Dingwall, J. D. J. Chem. Soc.,
Perkin Trans. 1984, 1, 2845–2853.
(18) Seco, J. M.; Quinoa, Riguera, E. Chem. ReV. 2004, 104, 17–117.
(19) Breneman, C. N.; Wiberg, K. B. J. Comput. Chem. 1990, 11, 361.
(20) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.;
Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Su, K. S. J.;
Windus, T. L.; Dupuis, M.; Montgomery, J. A. J. Comput. Chem. 1993,
14, 1347.
In general, we may conclude that the different solubility of
the RRS and RSS diastereoisomers in EtOH is a result of the
different number of HBs formed by each isomer with EtOH
molecules. In the case of SRS and SSS in Et2O, their different
solubility might be attributed to the different intramolecular HBs
formed on these diastereoisomers.
(21) van Gunsteren, W. F.; Billeter, S. R.; Eising, A. A.; Hunenberger,
P.; Kruger, M. A. E.; Scott, W. R. P.; Tironi, I. G. Biomolecular Simulation:
The GROMOS96 manual and user guide; Hochschulverlag AG an der ETH
Zurich: Zurich, Switzerland,1996.
(22) Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98, 10089.
(23) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.;
Pedersen, L. G. J. Chem. Phys. 1995, 103, 8577.
(24) Byrd, R. H.; Lu, P.; Nocedal, J. SIAM J. Sci. Stat. Comput. 1995,
16, 1190.
(25) Berendsen, H. J. C.; Postma, J. P. M.; DiNola, A.; Haak, J. R. J.
Chem. Phys. 1984, 81, 3684.
(26) Nose`, S. Mol. Phys. 1984, 52, 255.
Finally, in this study, the diastereoselective synthesis of the
potent phosphinic inhibitor RXP03 was achieved and confor-
mational as well as solvation studies of the RXP03 diastereoi-
somers were successfully performed.
(27) Hoover, W. G. Phys. ReV. A 1985, 31, 1695.
(28) Hockney, R. W.; Goel, S. P.; Eastwood, J. J. Comput. Phys. 1974,
14, 148.
(29) Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. J. Comput. Phys.
1977, 23, 327.
Acknowledgment. This work was supported by the European
Commission (FP5RDT, QLK3-CT02-02136 and FP6RDT,
LSHC-CT-2003-503297), by funds from the Laboratory of