A R T I C L E S
Hirsekorn et al.
metathesis in detailed mechanistic studies and catalytic applica-
tions. More recently, the dramatic increase in functionality
tolerance exhibited by Grubbs’ catalysts2,11,15,19,24 and variants7
and Schrock’s creative exploitation of molybdenum12,21 have
exponentially increased the use of olefin metathesis in fine
chemicals synthesis.7,11-15
Early in the history of alkylidene development, it was
recognized that rearrangement of LnMdCR(CH2R′′) to an olefin
complex LnM(RHCdCHR′′) could be a potentially damaging
process in relation to metathesis catalysis. In fact, the seeming
inability to synthesize alkylidenes with â-CH bonds was often
blamed on their intrinsic instability with respect to a bound
olefin, i.e., Kalk/ole < 1 in eq 1.25 While most studies regarding
number of olefin complexes have been prepared, but until
recently, none had been subjected to high temperature ther-
molysis. Preliminary indications with (silox)3Nb(ole) (1-ole, ole
) 1-butene, cyclohexene) and [(silox)3Nb]2(η-1,2;η-5,6-cC8H6)
indicated that Kalk/ole > 1 at elevated temperatures.36 Moreover,
little olefin metathesis activity was noted, despite ligands that
would be typically expected to support such reactivity. Given
these tantalizing examples, and the prospect that the sterics
intrinsic to the (silox)3M (M ) Nb, 1; Ta, 2) core would permit
interrogation of the olefin to alkylidene rearrangement without
interference from olefin metathesis, a systematic study of eq 1
was conducted, and it is reported herein.
Results
Synthesis of (silox)3Nb(olefin) Complexes. Two methods
were used to prepare niobium olefin complexes. The most
practical preparation of (silox)3Nb(ole) (1-ole, ole ) olefin)
involved Na/Hg reduction of (silox)3NbCl2 (3) in the presence
of an excess of olefin, typically with THF as the solvent (eq
2).36,37
olefin metathesis appear to support this premise, a limited
number of specific mechanistic studies have been attempted.
An investigation of cationic rhenium complexes by Gladysz and
Hatton led to an interpretation of the system (Kalk/ole < 1) as an
organometallic Wagner-Meerwein rearrangement in reference
to its carbocation-like hydrogen migration.26 A study by Bercaw
et al. of cyclometalated tantalum olefin and alkene complexes
showed only a modest thermodynamic preference for the latter.27
A significant number of observations suggest that a blanket
statement pertaining to the instability of alkylidenes with
â-hydrogens is dogmatic. Schrock et al. have catalyzed the
rearrangement of ethylene to ethylidene via addition of PhPH2,28
and there are several other systems in which a greater
thermodynamic stability of the alkylidene is implicated by
certain reactivity sequences,29-35 including clear examples of
olefin to alkylidene and alkylidyne rearrangements by Caulton
et al.34
THF, 24 h
Na/Hg, -2 NaCl8
(silox)3NbCl2 + olefin (excess)
3
(silox)3Nb(ole)
(2)
(3)
1-ole (ole ) cC7H10, 25%; cC6H10, 40%)
+ olefin (excess) benzene8
(silox) Nb(4-pic)
3
1-4-pic
(silox)3Nb(ole) + 4-picoline
1-ole (ole ) C2H4, C2H3Me (67%); C2H3Et (81%);
cis-MeCHCHMe (40%); H2CCHC6H4-p-X,
X ) H (44%), OMe (46%), CF3 (46%)
Yields are modest (∼40%), but the synthesis is direct as long
as an excess of olefin can be used. An alternative methodology
While the portrayal of â-hydrogen-substituted alkylidenes as
intrinsically unstable is compelling in view of the limited number
of stable examples, LnMdCR(CH2R′′) species must be inter-
mediates in a variety of catalytic applications,1-24 and their
potential to rearrange does not appear to be a major stumbling
block to utilization. Several questions remain. First, are LnMd
CR(CH2R′′) species thermodynamically unstable with respect
to their olefin congeners or are Kalk/ole dependent on metal or
substrate? Second, are these rearrangements kinetically swift,
or are there substantial impediments to the rearrangement
process?
(29) Miller, G. A.; Cooper, N. J. J. Am. Chem. Soc. 1985, 107, 709-711.
(30) Hughes, R. P.; Maddock, S. M.; Rheingold, A. L.; Guzei, I. A. Polyhedron
1998, 17, 1037-1043.
(31) Giannini, L.; Guillemot, G.; Solari, E.; Floriani, C.; Re, N.; Chiesi-Villa,
A.; Rizzoli, C. J. Am. Chem. Soc. 1999, 121, 2797-2807.
(32) (a) Schrock, R. R.; Seidel, S. W.; Mosch-Zanetti, N. C.; Shih, K.-Y.;
O’Donoghue, M. B.; Davis, W. M.; Reiff, W. M. J. Am. Chem. Soc. 1997,
119, 11876-11893. (b) Schrock, R. R.; Seidel, S. W.; Mosch-Zanetti, N.
C.; Dobbs, D. A.; Shih, K.-Y.; Davis, W. M. Organometallics 1997, 16,
5195-5208.
(33) (a) Kleckley, T. S.; Bennett, J. L.; Wolczanski, P. T.; Lobkovsky, E. B. J.
Am. Chem. Soc. 1997, 119, 247-248. (b) Kleckley, T. S., Ph.D. Thesis,
Cornell University, Ithaca, NY, 1998.
(34) (a) Ozerov, O. V.; Pink, M.; Watson, L. A.; Caulton, K. G. J. Am. Chem.
Soc. 2004, 126, 6363-6378. (b) Ozerov, O. V.; Pink, M.; Watson, L. A.;
Caulton, K. G. J. Am. Chem. Soc. 2004, 126, 2105-2113. (c) Ozerov, O.
V.; Pink, M.; Watson, L. A.; Caulton, K. G. J. Am. Chem. Soc. 2003, 125,
9604-9605.
In examining the chemistry of (silox)3NbL (1-NbL, L ) pyr,
4-pic,33 PMe3)36-38 and (silox)3Ta (2)39-44 over the years, a
(35) (a) Carmona, E.; Paneque, M.; Poveda, M. L. J. Chem Soc., Dalton Trans.
2003, 4022-4029. (b) Padilla-Martinez, I. I.; Poveda, M. L.; Carmona,
E.; Monge, M. A.; Ruiz-Valero, C. Organometallics 2002, 21, 93-104.
(36) Veige, A. S.; Wolczanski, P. T.; Lobkovsky, E. B. Angew. Chem., Int. Ed.
2001, 40, 3629-3632.
(23) (a) Schrock, R. R. Chem. ReV. 2002, 102, 145-179. (b) Schrock, R. R. J.
Chem. Soc., Dalton Trans. 2001, 2541-2550. (c) Wallace, K. C.; Liu, A.
H.; Dewan, J. C.; Schrock, R. R. J. Am. Chem. Soc. 1988, 110, 4964-
4977.
(24) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18-29.
(25) (a) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles
and Applications of Organotransition Metal Chemistry; University Science
Books: Mill Valley, CA. (b) Mingos, D. M. P. In ComprehensiVe
Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W.,
Eds.; Pergamon: New York, 1982; Vol. 3, Chapter 19.
(37) Veige, A. S.; Kleckley, T. S.; Chamberlin, R. L. M.; Neithamer, D. R.;
Lee, C. E.; Wolczanski, P. T.; Lobkovsky, E. B.; Glassey, W. V. J.
Organomet. Chem. 1999, 591, 194-203.
(38) (a) Veige, A. S.; Slaughter, L. M.; Lobkovsky, E. B.; Wolczanski, P. T.;
Matsunaga, N.; Decker, S. A.; Cundari, T. R. Inorg. Chem. 2003, 42, 6204-
6224. (b) Veige, A. S.; Slaughter, L. M.; Wolczanski, P. T.; Matsunaga,
N.; Decker, S. A.; Cundari, T. R. J. Am. Chem. Soc. 2001, 123, 6419-
6420.
(39) Chadeayne, A. R.; Wolczanski, P. T.; Lobkovsky, E. B. Inorg. Chem. 2004,
43, 3421-3432.
(40) Neithamer, D. R.; LaPointe, R. E.; Wheeler, R. A.; Richeson, D. S.; Van
Duyne, G. D.; Wolczanski, P. T. J. Am. Chem. Soc. 1989, 111, 9056-
9072.
(26) (a) Roger, C.; Bodner, G. S.; Hatton, W. G.; Gladysz, J. A. Organometallics
1991, 10, 3266-3274. (b) Hatton, W. G.; Gladysz, J. A. J. Am. Chem.
Soc. 1983, 105, 6157-6158.
(27) Parkin, G.; Bunel, E.; Burger, B. J.; Trimmer, M. S.; Van Asselt, A.;
Bercaw, J. E. J. Mol. Catal. 1987, 41, 21-39.
(28) Freundlich, J. S.; Schrock, R. R.; Davis, W. M. J. Am. Chem. Soc. 1996,
118, 3643-3655.
9
4810 J. AM. CHEM. SOC. VOL. 127, NO. 13, 2005