2478
A. Sanyal et al. / Tetrahedron Letters 46 (2005) 2475–2478
For some examples since these reviews: (d) Knappwost-
OH
Gieseke, C.;Nerenz, F.;Wartchow, R.;Winterfeldt, E.
Chem. Eur. J. 2003, 9, 3849–3858;(e) Wolter, M.;Borm,
C.;Merten, E.;Wartchow, R.;Winterfeldt, E. Eur. J. Org.
Chem. 2001, 4051–4060;(f) Tran-Huu-Dau, M.-E.;Wart-
O
LiAl(OtBu)3H
TMSCH2CH=CH2
TiCl4, -78 oC to rt
THF, -78 oC to rt
O
8
(40%,14:1)
(83%. 30:1)
HN
Ph
chow, R.;Winterfeldt, E.;Wong, Y.-S.
Chem. Eur. J.
25
2001, 7, 2349–2369;(g) Goldenstein, K.;Fendert, T.;
Proksch, P.;Winterfeldt, E. Tetrahedron 2000, 56, 4173–
4185.
O
3. Sanyal, A.;Snyder, J. K. Org. Lett. 2000, 2, 2527–2530.
4. Sanyal, A. PhD Dissertation, Boston University, 2002.
5. Corbett, M. S.;Liu, X.;Sanyal, A.;Snyder, J. K.
Tetrahedron Lett. 2003, 44, 931–935.
6. Burgess, K. L.;Lajkiewicz, N. J.;Sanyal, A.;Yan, W.;
Snyder, J. K. Org. Lett. 2004, ASAP.
FVP
O
190 oC, 10 min
O
27
HN
Ph
(90%)
26
O
7. (a) Jones, S.;Atherton, J. C. C. Tetrahedron: Asymmetry
2001, 12, 1117–1119;(b) Atherton, J. C. C.;Jones, S.
Tetrahedron Lett. 2001, 42, 8239–8241;(c) Atherton, J. C.
C.;Jones, S. Tetrahedron Lett. 2002, 43, 9097–9100;(d)
Atherton, J. C. C.;Jones, S. J. Chem. Soc., Perkin Trans. 1
2002, 2166–2173;(e) Bawa, R. A.;Jones, S. Tetrahedron
2004, 60, 2765–2770.
Scheme 8.
same, the stereochemistry of the maleimide cycloadducts
9 and 10, as well as the a,b-unsaturated lactams 14, 17–
19, 23, and 24 were assigned as shown earlier. The high
ee value for 27 confirms that racemization did not occur
during the pyrolysis. The trace amount of the enantio-
mer results from the less than absolute diastereoselecti-
vity in the original cycloaddition.
8. Chung, Y. S.;Duerr, B. F.;Nanjappan, P.;Czarnik, A. W.
J. Org. Chem. 1988, 53, 1334–1336.
9. (a) Trost, B. M.;Godleski, S. A.;Genet, J. P. J. Am.
Chem. Soc. 1978, 100, 3930–3931;(b) Trost, B. M.;
OÕKrongly, D.;Belletire, J. L. J. Am. Chem. Soc. 1980,
102, 7595–7596;(c) Tucker, J. A.;Houk, K. N.;Trost, B.
M. J. Am. Chem. Soc. 1990, 112, 5465–5471.
10. (a) Siegel, C.;Thornton, E. R. Tetrahedron Lett. 1988, 29,
5225–5228;(b) Tripathy, R.;Carroll, P. J.;Thornton, E.
R. J. Am. Chem. Soc. 1991, 113, 7630–7640.
In competition cycloadditions with unsubstituted
anthracene and NMM, 5 proved to be six times as reac-
tive. Thus, the reactivity of 5 is comparable to that of 1
and 3,3 and about twice as reactive as 4.6
In conclusion, a new, homochiral anthracene (5) has
been prepared and examined in the Diels–Alder/
retro-Diels–Alder sequence for the preparation of a,b-
unsaturated lactams and a,b-butenolides. While 5 was
successful in this sequence, three main areas for
improvement were defined. First, a faster, highly diaste-
reoselective Diels–Alder reaction needs to be achieved.
This objective may be attained if an aminoanthracene
is available that undergoes the cycloadditions at higher
temperatures yet still maintains high diastereoselectivity.
Indeed, 5 proved to be less stereoselective in its cyclo-
additions than chiral anthracenes 1–4. Second, an
aminoanthracene, which yields cycloadducts that are
stable to Grignard additions (avoids cycloreversion)
needs to be discovered. Finally, while the retro-Diels–
Alder reactions were successful at 190 ꢁC, a considerable
improvement over earlier attempts, achieving the cyclo-
reversion at lower temperatures remains a target. We are
currently examining other aminoanthracenes that may
accomplished these goals.
11. Masamune, S.;Choy, W.;Petersen, J. S.;Sita, L. R.
Angew. Chem., Int. Ed. Engl. 1985, 24, 1–30.
12. Knapp, S.;Ornaf, R. M.;Rodriques, K. E. J. Am. Chem.
Soc. 1983, 105, 5494–5495.
13. Bunnage, M. E.;Nicolaou, K. C. Angew. Chem., Int. Ed.
Engl. 1996, 35, 1110–1112.
14. (a) Kozmin, S. A.;Rawal, V. H. J. Am. Chem. Soc. 1997,
119, 7165–7166;(b) Kozmin, S. A.;Rawal, V. H. J. Am.
Chem. Soc. 1999, 121, 9562–9573;(c) Janey, J. M.;Iwama,
T.;Kozmin, S. A.;Rawal, V. H. J. Org. Chem. 2000, 65,
9059–9068.
15. For the procedure followed: Wagaw, S.;Rennels, R. A.;
Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 8451–8458.
16. (a) Stevens, B.;Perez, S. R.;Ors, J. A. J. Am. Chem. Soc.
1974, 96, 6846–6850;(b) Sweger, R. W.;Czarnik, A. W. J.
Am. Chem. Soc. 1991, 113, 1523–1530.
17. Operationally, the coupling mixture containing crude 5
was filtered through Celite, washing with anhydrous ether.
After evaporation of the solvent in vacuo, the residue was
dissolved in anhydrous toluene and the solution was
added dropwise to the solid dienophile (NMM or maleic
anhydride, 1.2 equiv). The final concentration of 5 was
0.3 M. The solution was maintained under nitrogen at rt.
18. Garrigues, P.;Garrigues, B. C.R. Acad. Sci. Paris, IIC
1998, 545–550.
References and notes
19. Schiess, P.;Barve, P. V.;Dussy, F. E.;Pfiffner, A.
Synth. 1995, 72, 116–124.
20. This solid mixture was prepared by dissolving 13 with
NMM (5 equiv) in CH2Cl2, then removing the solvent
in vacuo.
21. Chromatography was performed on a Shimadzu GC-17A
chromatograph equipped with an autosampler, GANNA
DEX-225 capillary column (Supelco, 30 m · 0.25 mm ·
0.25 lm);flow rate 1 mL/min with He carrier gas;
separation factor (a) = 25.
Org.
1. For reviews of retro-Diels–Alder chemistry: (a) Kwart, H.;
King, K. Chem. Rev. 1968, 68, 415–447;(b) Ripoll, J. L.;
Rouessac, A.;Rouessac, F. Tetrahedron 1978, 34, 19–40;
(c) Lasne, M. C.;Ripoll, J.-L. Synthesis 1985, 121–143;(d)
Rickborn, B. Org. React. 1998, 52, 1–393;(e) Rickborn, B.
Org. React. 1998, 53, 223–629.
2. For reviews of chiral diene templates in Diels–Alder/retro-
Diels–Alder sequences: (a) Winterfeldt, E. Chem. Rev.
1993, 93, 827–843;(b) Winterfeldt, E.;Borm, C.;Nerenz,
F. Adv. Asymm. Syn. 1997, 2, 1–53;(c) Klunder, A. J. H.;
Zhu, J.;Zwanenburg, B. Chem. Rev. 1999, 99, 1163–1190;
22. van Oeveren, A.;Feringa, B. L. J. Org. Chem. 1996, 61,
2920–2921.