Published on Web 10/19/2004
Optimization of Interstrand Hydrophobic Packing Interactions
within Unnatural DNA Base Pairs
Shigeo Matsuda and Floyd E. Romesberg*
Contribution from the Department of Chemistry, The Scripps Research Institute,
10550 North Torrey Pines Road, La Jolla, California 92037
Received May 9, 2004; E-mail: floyd@scripps.edu
Abstract: As part of an effort to expand the genetic alphabet, we have evaluated a large number of
predominantly hydrophobic unnatural base pairs. We now report the synthesis and stability of unnatural
base pairs formed between simple phenyl rings modified at different positions with methyl groups.
Surprisingly, several of the unnatural base pairs are virtually as stable as a natural base pair in the same
sequence context. The results show that neither hydrogen-bonding nor large aromatic surface area are
required for base pair stability within duplex DNA and that interstrand interactions between small aromatic
rings may be optimized for both stability and selectivity. These smaller nucleobases are not expected to
induce the distortions in duplex DNA or at the primer terminus that seem to limit replication of larger unnatural
base pairs, and they therefore represent a promising approach to the expansion of the genetic alphabet.
1. Introduction
In an effort to develop a third base pair to expand the genetic
alphabet, we have synthesized and characterized a large number
of nucleotides bearing unnatural nucleobase analogues.1-10 Just
as with their natural counterparts, these unnatural nucleotides
must pair stably and selectively within duplex DNA. In the case
of natural DNA, thermal stability and selectivity result from a
combination of intrastrand packing and interstrand hydrogen
bonding (H-bonding) interactions. Correspondingly, thermal
stability and selectivity of DNA containing unnatural base pairs
may be mediated by either intra- or interstrand interactions.
Nucleobase H-bonding interactions have been modified11-15 and
optimized,16,17 and their intrastrand packing has been improved
Figure 1. Isocarbostyril (left), naphthyl (middle), and indol (right) scaffolds.
by increasing their surface area.18,19 Increased surface area has
been achieved by the addition of alkyl, alkynyl, or aryl
substituents at the C7 and C5 positions of purines and
pyrimidines, respectively.18-22 Similarly, we have evaluated a
variety of large aromatic nucleobase analogues, based on the
isocarbostyril, naphthyl, and indole scaffolds (Figure 1). (Al-
though many of the unnatural nucleobases are not actually basic,
we refer to them as nucleobase analogues for simplicity.)
Generally, these nucleobases form unnatural self-pairs (pairs
formed between two identical unnatural nucleotides) and
heteropairs (pairs formed between different unnatual nucleotides)
with reasonable stability and good selectivity, relative to the
natural base pairs.1-10 Either self-pairs or heteropairs may be
used for expansion of the genetic code.
Efficient replication by a DNA polymerase is also required
of an unnatural base pair. Unfortunately, we have generally
found that nucleobases with large hydrophobic surface area are
poor substrates for replication.1-10 While the unnatural tri-
phosphates tend to be efficiently inserted opposite their designed
partner in the template, the nascent unnatural primer terminus
(1) Berger, M.; Ogawa, A. K.; McMinn, D. L.; Wu, Y.; Schultz, P. G.;
Romesberg, F. E. Angew. Chem., Int. Ed. 2000, 39, 2940-2942.
(2) Berger, M.; Luzzi, S. D.; Henry, A. A.; Romesberg, F. E. J. Am. Chem.
Soc. 2002, 124, 1222-1226.
(3) Henry, A. A.; Yu, C.; Romesberg, F. E. J. Am. Chem. Soc. 2003, 125,
9638-9646.
(4) Matsuda, S.; Henry, A. A.; Schultz, P. G.; Romesberg, F. E. J. Am. Chem.
Soc. 2003, 125, 6134-6139.
(5) McMinn, D. L.; Ogawa, A. K.; Wu, Y.; Liu, J.; Schultz, P. G.; Romesberg,
F. E. J. Am. Chem. Soc. 1999, 121, 11585-11586.
(6) Ogawa, A. K.; Wu, Y.; McMinn, D. L.; Liu, J.; Schultz, P. G.; Romesberg,
F. E. J. Am. Chem. Soc. 2000, 122, 3274-3287.
(7) Ogawa, A. K.; Wu, Y.; Berger, M.; Schultz, P. G.; Romesberg, F. E. J.
Am. Chem. Soc. 2000, 122, 8803-8804.
(8) Tae, E. L.; Wu, Y. Q.; Xia, G.; Schultz, P. G.; Romesberg, F. E. J. Am.
Chem. Soc. 2001, 123, 7439-7440.
(9) Wu, Y.; Ogawa, A. K.; Berger, M.; McMinn, D. L.; Schultz, P. G.;
Romesberg, F. E. J. Am. Chem. Soc. 2000, 122, 7621-7632.
(10) Yu, C.; Henry, A. A.; Romesberg, F. E.; Schultz, P. G. Angew. Chem., Int.
Ed. 2002, 41, 3841-3844.
(11) Switzer, C.; Moroney, S. E.; Benner, S. A. J. Am. Chem. Soc. 1989, 111,
8322-8323.
(16) Lin, K.-Y.; Matteucci, M. D. J. Am. Chem. Soc. 1998, 120, 8531-8532.
(17) Flanagan, W. M.; Wolf, J. J.; Olsen, P.; Grant, D.; Lin, K. Y.; Wagner, R.
W.; Matteucci, M. D. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 3515-3518.
(18) Kool, E. T.; Morales, J. C.; Guckian, K. M. Angew. Chem., Int. Ed. 2000,
39, 990-1009.
(12) Piccirilli, J. A.; Krauch, T.; Moroney, S. E.; Benner, S. A. Nature 1990,
343, 33-37.
(13) Switzer, C. Y.; Moroney, S. E.; Benner, S. A. Biochemistry 1993, 32, 2,
10489-10496.
(19) Kool, E. T. Chem. ReV. 1997, 97, 1473-1487.
(14) Horlacher, J.; Hottiger, M.; Podust, V. N.; Hu¨bscher, U.; Benner, S. A.
Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 6329-6333.
(15) Lutz, M. J.; Held, H. A.; Hottiger, M.; Hu¨bscher, U.; Benner, S. A. Nucleic
Acids Res. 1996, 24, 1308-1313.
(20) Ahmadian, M.; Zhang, P.; Bergstrom, D. E. Nucleic Acids Res. 1998, 26,
3127-3135.
(21) He, J.; Seela, F. Nucleic Acids Res. 2002, 30, 5485-5496.
(22) Seela, F.; Zulauf, M. HelV. Chim. Acta 1999, 82, 1878-1898.
9
10.1021/ja047291m CCC: $27.50 © 2004 American Chemical Society
J. AM. CHEM. SOC. 2004, 126, 14419-14427
14419