K. R. Shreder et al. / Bioorg. Med. Chem. Lett. 15 (2005) 4256–4260
4259
Thornberry, N. A.; Weber, A. E. Bioorg. Med. Chem. Lett.
2004, 14, 43; (b) Ashton, W. T.; Dong, H.; Sisco, R. M.;
Doss, G. A.; Leiting, B.; Patel, R. A.; Wu, J. K.; Marsilio,
F.; Thornberry, N. A.; Weber, A. E. Bioorg. Med. Chem.
Lett. 2004, 14, 859.
lated that a shortening of the alkyl chain length of boro-
Nle to the corresponding boro-alanine (boro-Ala) would
improve DPP4 potency. Val-boro-Ala (8) was synthe-
sized from methylboronic acid in an analogous fashion
to the boro-Nle synthesis described earlier. In agreement
with the proposed influence of the P1 chain length, Val-
boro-Ala (8) is a potent inhibitor of DPP4 with a DPP4
IC50 value of 0.89 nM. In contrast, the potency of Val-
boro-Nle (4e) against DPP4 was some 19,000-fold less.
For both the compounds 4e and 8, the DPP7 potency
differed by a factor of 4 with DPP7 IC50 values of 40
and 160 nM, respectively.22 Thus, a shorter P1 chain
length can significantly increase DPP4 potency but
may have a less profound effect on DPP7 potency.
7. Edmondson, S. D.; Mastracchio, A.; Beconi, M.; Colwell,
L. F., Jr.; Habulihaz, B.; He, H.; Kumar, S.; Leiting, B.;
Lyons, K. A.; Mao, A.; Marsilio, F.; Patel, R. A.; Wu, J.
K.; Zhu, L.; Thornberry, N. A.; Weber, A. E.; Parmee, E.
R. Bioorg. Med. Chem. Lett. 2004, 14, 5151.
8. Brockunier, L. L.; He, J.; Colwell, L. F., Jr.; Habulihaz,
B.; He, H.; Leiting, B.; Lyons, K. A.; Marsilio, F.; Patel,
R. A.; Teffera, Y.; Wu, J. K.; Thornberry, N. A.; Weber,
A. E.; Parmee, E. R. Bioorg. Med. Chem. Lett. 2004, 14,
4763.
9. Caldwell, C. G.; Chen, P.; He, J.; Parmee, E. R.; Leiting,
B.; Marsilio, F.; Patel, R. A.; Wu, J. K.; Eiermann, G. J.;
Petrov, A.; He, H.; Lyons, K. A.; Thornberry, N. A.;
Weber, A. E. Bioorg. Med. Chem. Lett. 2004, 14, 1265.
10. Sto¨ckel-Maschek, A.; Mrestani-Klaus, C.; Stiebitz, B.;
Demuth, H.-U.; Neubert, K. Biochem. Biophys. Acta 2000,
15, 1479.
The selectivity profiles of both these compounds were
also compared to Val-boro-Pro (6c). For DPP7, IC50
values for all three compounds did not differ by a factor
of more than 4. For the other DPPs, when compared to
compounds 4e and 8, Val-boro-Pro (6c) was found to be
the most potent inhibitor and, in some cases, by several
orders of magnitude. Using the P2 residue Val as an
example, it is clear that DPP selectivity and potency
can sometimes best be modulated by choosing amino
boronic acids other than boro-Pro for the P1 position.
11. Senten, K.; Danie¨ls, L.; Van der Veken, P.; De Meester, I.;
´
Lambeir, A.-M.; Scharpe, S.; Haemers, A.; Augustyns, K.
J. Comb. Chem. 2003, 5, 336.
12. Hu, Y.; Ma, L.; Wu, M.; Wong, M. S.; Li, B.; Corral, S.;
Yu, Z.; Nomanbhoy, T.; Alemayehu, S.; Fuller, S. F.;
Rosenblum, J. S.; Rozenkrants, N.; Minimo, L.; Ripka,
W. C.; Szardenings, A. K.; Kozarich, J. W.; Shreder, K. R.
Med. Chem. Lett. 2005, 15, 4239.
13. In our assay, the DPP7 IC50 value for 1-[Dab]-piperidine
was determined to be 69 nM.
14. (a) Senten, K.; Van der Veken, P.; Bal, G.; De Meester, I.;
In conclusion, boro-Nle is a novel P1 residue for the de-
sign of DPP7 selective dipeptide inhibitors. When com-
pared to their boro-Pro congeners, Nle-boro-Nle (4d)
and Dab-boro-Nle (4g) were shown to be significantly
more selective for DPP7. Factors such as the choice of
P2 residue, the presence of the boronic acid, and the
P1 alkyl chain length all play a role in the DPP7 selectiv-
ity and potency of boro-Nle-based inhibitors. The most
DPP7 selective inhibitor found in this study was Dab-
boro-Nle (4g). As such, this compound holds promise
as a tool that can be used to investigate DPP7 biology.
This research sets the stage for the design of other
DPP selective dipeptides inhibitors which incorporate
amino boronic acids based on P1 residues other than
the canonical proline. Reports along these lines will be
presented in due course.
´
Lambeir, A.-M.; Scharpe, S.; Bauvois, B.; Haemers, A.;
Augustyns, K. Bioorg. Med. Chem. Lett. 2002, 12, 2825;
(b) Senten, K.; Van der Veken, P.; De Meester, I.;
´
Lambeir, A. M.; Scharpe, S.; Haemers, A.; Augustyns,
K. J. Med. Chem. 2003, 46, 5005.
15. Senten, K.; Van der Veken, P.; De Meester, I.; Lambeir,
A. M.; Scharpe, S.; Haemers, A.; Augustyns, K. J. Med.
Chem. 2004, 47, 2906.
16. (a) Matteson, D. S.; Jesthi, P. K.; Sadhu, K. M.
Organometallics 1984, 3, 1284; (b) Matteson, D. S. In
Stereodirected Synthesis with Organoboranes; Springer:
Berlin, 1995; (c) Matteson, D. S. Chem. Rev. 1989, 89,
1535.
1
17. Compound 2: H NMR (400 MHz) d (CDCl3): 4.37 (dd,
1H, J = 2.0 Hz, J = 8.8 Hz), 3.47 (dd, 1H, J = 6.4 Hz,
J = 8.4 Hz), 2.30 (m, 2H), 2.09 (t, 1H, J = 5.2 Hz), 7.41 (m,
4H), 1.92 (m, 2H), 1.87 (m, 2H), 1.54 (s, 3H), 1.36 (m, 4H),
1.29 (s, 3H), 1.81 (d, 2H, J = 8.4 Hz), 0.91 (t, 3H
J = 7.2 Hz), 0.85 (s, 3H).
References and notes
1. Rosenblum, J. S.; Kozarich, J. W. Curr. Opin. Chem. Biol.
2003, 7, 496.
2. Underwood, R.; Chiravuri, M.; Lee, H.; Schmitz, T.;
Kabcenell, A. K.; Yardley, K.; Huber, B. T. J. Biol. Chem.
1999, 274, 34053.
3. Chiravuri, M.; Schmitz, T.; Yardley, K.; Underwood, R.;
Dayal, Y.; Huber, B. T. J. Immunol. 1999, 163, 3092.
4. Leiting, B.; Pryor, K. D.; Wu, J. K.; Marsilio, F.; Patel, R.
A.; Craik, C. S.; Ellman, J. A.; Cummings, R. T.;
Thornberry, N. A. Biochem. J. 2003, 371, 525.
5. Coutts, S. J.; Kelly, T. A.; Snow, R. J.; Kennedy, C. A.;
Barton, R. W.; Adams, J.; Krolikowski, D. A.; Freeman,
D. M.; Campbell, S. J.; Ksiazek, J. F.; Bachovchin, W. W.
J. Med. Chem. 1996, 39, 2087.
18. Coutts, S. J.; Adams, J.; Krolikowski, D.; Snow, R. J.
Tetrahedron Lett. 1994, 35, 5109.
19. Human DPP7, DPP4, and FAP IC50 values were obtained
as described in Ref. 12. Human DPP8 and DPP9 IC50
values were determined via competition between the test
compound and the active site labeling of these enzymes by
FP-TAMRA, a fluorophosphonate-derived, tetramethyl-
rhodamine-tagged activity-based probe for serine hydro-
lases (for more information on this technique, see: Leung,
D.; Hardouin, C.; Boger, D. L.; Cravatt, B. F. Nat.
Biotechnol. 2003, 21, 687, Briefly, MDA-MB-435 cell
lysate was used as a source of DPP8 and DPP9. To
determine IC50 values, test compounds were dissolved in
50% DMSO/50 mM glycine buffer, pH 2.5 (the final
concentration of DMSO in the assays was 1% v/v), then
serially diluted into the lysate to yield; finally, eight
different concentrations ranging from 10 lM to 0.64 nM.
6. (a) Parmee, E. R.; He, J.; Mastracchio, A.; Edmondson, S.
D.; Colwell, L.; Eiermann, G.; Feeney, W. P.; Habulihaz,
B.; He, H.; Kilburn, R.; Leiting, B.; Lyons, K.; Marsilio,
F.; Patel, R. A.; Petrov, A.; Di Salvo, J.; Wu, J. K.;