program on the synthesis of carbocyclic nucleosides
accomplishing a synthesis of (()-cyclobut A5 and (-)-
carbovir.6
Convenient Route to Both Enantiomers of
a Highly Functionalized
Trans-Disubstituted Cyclopentene.
Synthesis of the Carbocyclic Core of the
Nucleoside BCA
Shyamapada Banerjee, Sarita Ghosh, Saikat Sinha, and
Subrata Ghosh*
Department of Organic Chemistry, Indian Association for
the Cultivation of Science, Jadavpur,
Kolkata 700 032, India
We next focused our attention on the synthesis of the
carbocyclic moiety of BCA. While considering this syn-
thesis, we were guided by our desire to design a synthesis
of an enantiopure cyclopentene derivative that allows
access not only to BCA but also to a vast array of vicinally
substituted bioactive cyclopentanoids such as prostag-
landins,7 jasmones,8 brefeldin,9 etc. We visualized that
the cyclopentenol 4 would be a versatile building block
for entry into these classes of compounds. We herein
report a stereocontrolled approach to the synthesis of
both enantiomers of the highly functionalized cyclopen-
tene derivative 4 and conversion of one of them to the
amino cyclopentene 5, an intermediate to (-)-BCA 3.
Received February 7, 2005
Synthesis of both enantiomers of a highly functionalized
cyclopentenol derivative, versatile building block for a vast
array of biologically active compounds, is described. The key
steps involve stereocontrolled synthesis of a diene with two
syn-disposed substituents from a (R)-(+)-glyceraldehyde
derivative, ring-closing metathesis of this diene, and func-
tional group manipulation of the resulting trans-disubsti-
tuted cyclopentene. One of the enantiomers of the cyclopen-
tenol thus obtained has been converted to an amino
cyclopentene, the carbocyclic core of the nucleoside (-)-BCA,
a potent inhibitor of HIV reverse transcriptase.
(2) For reviews on synthesis of carbocyclic nucleosides, see: (a)
Crimmins, M. T. Tetrahedron 1998, 54, 9229-9272. (b) Ferrero, M.;
Gotor, V. Chem. Rev. 2000, 100, 4319-4347. For selected recent
synthesis, see: (c) Kuang, R.; Ganguly, A. K.; Chan, T.-M.; Pramanik,
B. N.; Blythin, D. J.; McPhail, A. T.; Saksena, A. K. Tetrahedron Lett.
2000, 41, 9575-9579. (d) Brown, B.; Hegedus, L. S. J. Org. Chem. 2000,
65, 1865-1872. (e) Ono, M.; Nishimura, K.; Tsubouchi, H.; Nagaoka,
Y.; Tomioka, K. J. Org. Chem. 2001, 66, 8199-8203. (f) Choi, W. J.;
Park, J. G.; Yoo, S. J.; Kim, H. O.; Moon, H. R.; Chun, M. W.; Jung, Y.
H.; Jeong, L. S. J. Org. Chem. 2001, 66, 6490-6494. (g) Gurjar, M. K.;
Maheshwar, K. J. Org. Chem. 2001, 66, 7552-7554. (h) Ewing, D. F.;
Glacon, V.; Mackenzie, G.; Leu, C. Tetrahedron Lett. 2002, 43, 989-
991. (i) Kim, K. H.; Miller, M. J. Tetrahedron Lett. 2003, 44, 4571-
4573. (j) Hong, J. H.; Oh, C.-H.; Cho, J.-H. Tetrahedron 2003, 59, 6103-
6108. (k) Fang, Z.; Hong, J. H. Org. Lett. 2004, 6, 993-995. (l) Davis,
F. A.; Wu, Y. Org. Lett. 2004, 6, 1269-1272. (m) Joshi, B. V.; Moon,
H. R.; Fettinger, J. C.; Marquez, V. E.; Jacobson, K. A. J. Org. Chem.
2005, 70, 439-447.
(3) For selected approaches to (-)-carbovir, see: (a) Trost, B. M.;
Leping, L.; Guile, S. D. J. Am. Chem. Soc. 1992, 114, 8745-8747. (b)
Evans, C. T.; Roberts, S. M.; Shoberu, K. A.; Sutherland, A. G. J. Chem.
Soc., Perkin Trans. 1 1992, 589-592. (c) Asami, M.; Takahashi, J.;
Inoue, S. Tetrahedron: Asymmetry 1994, 5, 1649-1652. (d) Hodgson,
D. M.; Witherington, I.; Moloney, B. A. J. Chem. Soc., Perkin Trans. 1
1994, 3373-3378. (e) Nokami, J.; Matsuura, H.; Nakasima, K.;
Shibata, S. Chem. Lett. 1994, 1071-1074, and references therein. (f)
Roulland, E.; Monneret, C.; Florent, J. C. Tetrahedron Lett. 2003, 44,
4125-4128. For synthesis of abacavir, see: (g) Crimmins, M. T.; King,
B. W. J. Org. Chem. 1996, 61, 4192-4193. (h) Crimmins, M. T.;
Zuercher, W. J. Org. Lett. 2000, 2, 1065.
Nucleosides1 exhibit a wide range of biological activity.
The metabolic instability of nucleosides caused by cleav-
age of glycosidic bonds by the enzymes phosphorylases
has restricted their therapeutic application. The search
for metabolically stable nucleosides with potent antitu-
mor and antiviral activities led to several structural
modifications. One such modification is replacement of
the oxygen atom of the sugar ring by a methylene unit
resulting in carbocyclic nucleosides. The carbocyclic
nucleosides are highly resistant to phosphorylases with
comparable biological activity to the parent nucloesides.
With the outbreak of the AIDS epidemic, the search for
new carbocyclic nucleoside analogues2 intensified to a
great extent. Several carbocyclic nucleosides2a,b such as
carbovir 1, abacavir 2, and bis(hydroxymethyl)cyclopen-
tenyl adenine (BCA) 3 have been found to be inhibitors
of HIV, the causative agent of AIDS. Several approaches3
to the synthesis of the carbocyclic core of the nucleosides
1 and 2 have been reported. However, there are only few
reports4 on the synthesis of BCA. We have initiated a
(4) (a) Katagiri, N.; Nomura, M.; Sato, H.; Kaneko, C.; Yusa, K.;
Tsuruo, T. J. Med. Chem. 1992, 35, 1882-1886. (b) Katagiri, N.;
Toyota, A.; Shiraishi, T.; Sato, H.; Kaneko, C. Tetrahedron Lett. 1992,
33, 3507-3510. (c) Tanaka, M.; Norimine, Y.; Fujita, T.; Suemune, H.;
Sakai, K. J. Org. Chem. 1996, 61, 6952-6957.
(5) Panda, J.; Ghosh, S.; Ghosh, S. J. Chem. Soc., Perkin Trans. 1
2001, 3013-3016.
(6) Nayek, A.; Banerjee, S.; Sinha, S.; Ghosh, S. Tetrahedron Lett.
2004, 45, 6457-6460.
(7) Stork, G. In Classics in Total Synthesis; Nicolaou, K. C.,
Sorensen, E. J., Eds.; VCH Publishers, Inc.: New York, 1996; Chapter
9.
(1) (a) Nucleosides and Nucleotides as Antitumor and Antiviral
Agents; Chu, C. K., Baker, D. C., Eds.; Plenum Press: New York, 1993.
(b) Chemistry of Nucleosides and Nucleotides; Townsend, L. B., Ed.;
Plenum Press: New York, 1988.
(8) Suzuki, K.; Inomata, K.; Endo, Y. Org. Lett. 2004, 409-411 and
references therein.
(9) Wu, Y.; Shen, X.; Yang, Y. Q.; Hu, Q.; Huang, J. H. Tetrahedron
Lett. 2004, 45, 199-202.
10.1021/jo0502504 CCC: $30.25 © 2005 American Chemical Society
Published on Web 04/05/2005
J. Org. Chem. 2005, 70, 4199-4202
4199