Yao et al.
processes.9 Polycyclic aromatics can also be used as rigid
molecular platforms in various areas of chemical re-
search, such as host-guest chemistry,10 liquid crystal
chemistry,11 and biochemical studies of synthetic pep-
tides.12 Furthermore, these rigid conjugated materials
can serve as key components in many advanced technolo-
gies utilizing nonlinear optical,13 photo- and electrolu-
minescent,14 and molecule-based sensory devices.15 They
can transfer an applied bias or optical input to a desired
response through their highly conjugated π electron
systems. Polycyclic aromatics obviously possess the de-
gree of conjugation and rigidity necessary to eliminate
conformational disorder, which lowers the effective con-
jugation.16
SCHEME 1
2,3-dihydropyrroles and pyrroles,25 pyrilium salts,26 bi-
cyclic â-lactams,27 isochromenes,28,26a phosphaisocou-
marins,29 and isoindolin-1-ones30 via electrophilic cycliza-
tion of functionally substituted alkynes. This successful
electrophilic cyclization strategy has encouraged us to
develop a more general methodology for the synthesis of
polycyclic aromatics.31 Herein, we report the successful
electrophilic cyclization of arene-containing acetylenes to
polycyclic aromatics. This chemistry generally produces
good to excellent yields of polycyclic aromatics under very
mild reaction conditions, accommodates various func-
tional groups, and has been successfully extended to
systems containing a variety of polycyclic and heterocyclic
rings.
We and others have developed methods for the syn-
thesis of benzo[b]thiophenes,17 isoquinolines and naph-
thyridines,18 isocoumarins and R-pyrones,19 benzofurans,20
furans,21 indoles,22 furopyridines,23 cyclic carbonates,24
(7) For reviews see: (a) Larock, R. C. J. Organomet. Chem. 1999,
576, 111. (b) Larock, R. C. Palladium-Catalyzed Annulation. In
Perspectives in Organopalladium Chemistry for the XXI Century; Tsuji,
J., Ed.; Elsevier Press: Lausanne, Switzerland, 1999; p 111. (c) Larock,
R. C. Pure Appl. Chem. 1999, 71, 1435.
(8) Tsuji, J. Palladium Reagents and Catalysts; John Wiley &
Sons: Chichester, UK, 1999.
(9) (a) Campo, M. A.; Larock, R. C. Org. Lett. 2000, 2, 3675. (b)
Arcadi, A.; Cacchi, S.; Fabrizi, G.; Moro, L. Eur. J. Org. Chem. 1999,
1137. (c) Cacchi, S.; Fabrizi, G.; Pace, P.; Marinelli, F. Synlett 1999, 5,
620. (d) Arcadi, A.; Cacchi, S.; Carnicelli, V.; Marinelli, F. Tetrahedron
1994, 50, 437. (e) Arcadi, A.; Cacchi, S.; Rosario, M. D.; Fabrizi, G.;
Marinelli, F. J. Org. Chem. 1996, 61, 9280. (f) Campo, M. A.; Larock,
R. C. J. Org. Chem. 2002, 67, 5616.
Results and Discussion
A two-step approach to polycyclic aromatics has been
examined involving (i) preparation of 2-(1-alkynyl)biaryls
by the Sonagashira coupling reaction32 and (ii) electro-
philic cyclization (Scheme 1).
(10) (a) Cram, D. J. Nature 1992, 356, 29. (b) Schwartz, E. B.;
Knobler, C. B.; Cram, D. J. J. Am. Chem. Soc. 1992, 114, 10775. (c)
Dijkstra, P. J.; Skowronska-Ptasinska, M.; Reinhoudt, D. N.; Den
Hertog, H. J.; Van Eerden, J.; Harkema, S.; De Zeeuw, D. J. Org. Chem.
1987, 52, 4913.
(11) (a) Chandrasekhar, S. Advances in Liquid Crystals; Academic
Press: New York, 1982; Vol. 5, p 47. (b) Chandrasekhar, S.; Ranganath,
G. S. Rep. Prog. Phys. 1990, 53, 57. (c) Praefcke, K.; Kohne, B.; Singer,
D. Angew Chem., Int. Ed. Engl. 1990, 29, 177.
(12) (a) Veber, D. F.; Strachan, R. G.; Bergstrand, S. J.; Holly, F.
W.; Homnick, C. F.; Hirschmann, R.; Torchiana, M. L.; Saperstein, R.
J. Am. Chem. Soc. 1976, 98, 2367. (b) Tsang, K. Y.; Diaz, H.; Graciani,
N.; Kelly, J. W. J. Am. Chem. Soc. 1994, 116, 3988.
(13) (a) Munn, R. W.; Ironside, C. N. Principles and Application of
Nonlinear Optical Materials; Chapman & Hall: London, UK, 1993.
(b) Nie, W. Adv. Mater. 1993, 5, 520. (c) Prasad, P. N.; Williams, D. J.
Introduction to Nonlinear Optical Effects in Molecules and Polymers;
Wiley: New York, 1991.
The 2-(1-alkynyl)biaryls required for our approach are
readily prepared by Sonogashira coupling32 of the corre-
sponding 2-iodobiaryls with terminal alkynes by using
2% PdCl2(PPh3)2 and 1% CuI in Et3N solvent at 55 °C.
The yields of this process range from 55% to 99% and
this procedure readily accommodates considerable func-
tionality.
To explore the scope of our electrophilic cyclization
strategy, the reactions of alkynyl biphenyl 1 with various
electrophiles (ICl, I2, NBS, p-O2NC6H4SCl, and PhSeCl)
(21) (a) Bew, S. P.; Knight, D. W. J. Chem. Soc., Chem. Commun.
1996, 1007. (b) Djuardi, E.; McNelis, E. Tetrahedron Lett. 1999, 40,
7193. (c) El-Taeb, G. M. M.; Evans, A. B.; Jones, S.; Knight, D. W.
Tetrahedron Lett. 2001, 42, 5945. (d) Rao, M. S.; Esho, N.; Sergeant,
C.; Dembinski, R. J. Org. Chem. 2003, 68, 6788.
(14) (a) Greenham, N. C.; Moratti, S. C.; Bradley, D. D. C.; Friend,
R. H.; Holmes, A. B. Nature 1993, 365, 628. (b) Schwoerer, M. Phys.
Bull. 1994, 50, 52. (c) Gru¨ner, J. F.; Hamer, P.; Friend, R. H.; Huber,
J.; Scherf, U.; Holmes, A. B. Adv. Mater. 1994, 6, 748. (d) Braun, D.;
Heeger, A. J. Appl. Phys. Lett. 1991, 58, 1982.
(22) (a) Barluenga, J.; Trincado, M.; Rubio, E.; Gonzalez, J. M.
Angew. Chem., Int. Ed. 2003, 42, 2406. (b) Yue, D.; Larock, R. C. Org.
Lett. 2004, 6, 1037.
(15) (a) Swager, T. M.; Marsella, M. J. Adv. Mater. 1994, 6, 595. (b)
Marsella, M. J.; Swager, T. M. J. Am. Chem. Soc. 1993, 115, 12214.
(c) Marsella, M. J.; Carroll, P. J.; Swager, T. M. J. Am. Chem. Soc.
1994, 116, 9347. (d) McCullough, R. D.; Williams, S. P. J. Am. Chem.
Soc. 1993, 115, 11608. (e) Youssoufi, H. K.; Hmyene, M.; Garnier, F.;
Delabouglise, D. J. Chem. Soc., Chem. Commun. 1993, 1550. (f)
Schuhmann, W.; Huber, J.; Mirlach, A.; Daub, J. Adv. Mater. 1993, 5,
124.
(23) Arcadi, A.; Cacchi, S.; Di Giuseppe, S.; Fabrizi, G.; Marinelli,
F. Org. Lett. 2002, 4, 2409.
(24) Marshall, J. A.; Yanik, M. M. J. Org. Chem. 1999, 64, 3798.
(25) Knight, D. W.; Redfern, A. L.; Gilmore, J. J. Chem. Soc., Chem.
Commun. 1998, 2207.
(26) (a) Barluenga, J.; Vazque-Villa, H.; Ballesteros, A.; Gonzalez,
J. M. J. Am. Chem. Soc. 2003, 125, 9028. (b) Barluenga, J.; Vazque-
Villa, H.; Ballesteros, A.; Gonzalez, J. M. Org. Lett. 2003, 5, 4121.
(27) Ren, X.-F.; Konaklieva, M. I.; Shi, H.; Dickey, S.; Lim, D. V.;
Gonzalez, J.; Turos, E. J. Org. Chem. 1998, 63, 8898.
(16) Schlu¨ter, A. Adv. Mater. 1991, 3, 282.
(17) (a) Larock, R. C.; Yue, D. Tetrahedron Lett. 2001, 42, 6011. (b)
Yue, D.; Larock, R. C. J. Org. Chem. 2002, 67, 1905. (c) Flynn, B. L.;
Verdier-Pinard, P.; Hamel, E. Org. Lett. 2001, 3, 651.
(28) (a) Asao, N.; Nogami, T.; Takahashi, K.; Yamamoto, Y. J. Am.
Chem. Soc. 2002, 124, 764. (b) Nakamura, H.; Ohtaka, M.; Yamamoto,
Y. Tetrahedron Lett. 2002, 43, 7631.
(18) (a) Huang, Q.; Hunter, J. A.; Larock, R. C. Org. Lett. 2001, 3,
2973. (b) Huang, Q.; Hunter, J. A.; Larock, R. C. J. Org. Chem. 2002,
67, 3437.
(29) Peng, A.-Y.; Ding, Y.-X. Org. Lett. 2004, 6, 1119.
(30) Yao, T.; Larock, R. C. J. Org. Chem. 2005, 70, 1232.
(31) For a previous communication, see: Yao, T.; Campo, M. A.;
Larock, R. C. Org. Lett. 2004, 6, 2677.
(19) (a) Yao, T.; Larock, R. C. Tetrahedron Lett. 2002, 43, 7401. (b)
Yao, T.; Larock, R. C. J. Org. Chem. 2003, 68, 5936. (c) Oliver, M. A.;
Gandour, R. D. J. Org. Chem. 1984, 49, 558. (d) Biagetti, M.; Bellina,
F.; Carpita, A.; Stabile, P.; Rossi, R. Tetrahedron 2002, 58, 5023. (e)
Rossi, R.; Carpita, A.; Bellina, F.; Stabile, P.; Mannina, L. Tetrahedron
2003, 59, 2067.
(32) For reviews, see: (a) Campbell, I. B. The Sonogashira Cu-Pd-
Catalyzed Alkyne Coupling Reaction. Organocopper Reagents; Taylor,
R. J. K., Ed.; IRL Press: Oxford, UK, 1994; pp 217-235. (b) Sono-
gashira, K.; Takahashi, S. Yuki Gosei Kagaku Kyokaishi 1993, 51,
1053. (c) Sonogashira, K. In Comprehensive Organic Synthesis; Trost,
B. M., Ed.; Pergamon: Oxford, UK, 1991; Vol. 3, pp 521-549.
(20) Arcadi, A.; Cacchi, S.; Fabrizi, G.; Marinelli, F.; Moro, L. Synlett
1999, 1432.
3512 J. Org. Chem., Vol. 70, No. 9, 2005