Macromolecules, Vol. 38, No. 13, 2005
Acylation Reactions Employing DMAP Catalysts 5415
(2) Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am.
Chem. Soc. 2000, 122, 4243-4244.
(3) List, B. Acc. Chem. Res. 2004, 37, 548-557.
(4) Catalysis from A to Z: A Concise Encyclopedia; Cornils, B.,
Herrmann, W. A., Schlo¨gl, R., Wong, C.-H., Eds.; Wiley-
VCH: Weinheim, 2000.
activity was not observed to diminish with repeated use.
Yields for simple acylations, such as 2-butanol, were
consistent with the literature values for DMAP or PPY
and a slight difference in reactivity was observed for
dendrimers 1 and 2, again emphasizing the effect of
catalyst nanoenvironment on the kinetics.
(5) Fan, Q.-H.; Li, Y.-M.; Chan, A. S. C. Chem. Rev. 2002, 102,
3385-3466.
Conclusion
(6) Bergbreiter, D. E. Chem. Rev. 2002, 102, 3345-3384.
(7) Piotti, M. E.; Rivera, F., Jr.; Bond, R.; Hawker, C. J.; Fre´chet,
Using amphiphilic 4-(dialkylamino)pyridine contain-
ing dendrimers 1 and 2 and dendronized polymer 3, we
have examined the role of catalyst nanoenvironment
and polymer architecture in the context of sterically
demanding acylation reactions employing tertiary al-
cohols and various anhydride electrophiles. The data
clearly indicate a preference for the more compact
polyester-based polymers 2 and 3. These polymers were
found to promote the desired transformations with
greater efficacy than polymers based on a benzyl ether
platform and in some instances with greater efficacy
than the small-molecule catalyst DMAP. The rationale
for this behavior has been attributed to a “concentrator
effect” whereby reactions employing the polymer cata-
lysts benefit from the gradient polarity of the core-shell
macromolecules that accumulates substrates within the
interior of the polymers, in closer proximity to the
catalytic moieties than would be possible in solution
with free catalyst. Moreover, since the product of the
acylation reaction is more nonpolar than its alcohol
precursor, product inhibition is thought to be mitigated
by the preferential migration of the product from the
polymer interior space back into the surrounding non-
polar medium. It should be pointed out that other
dielectric effects may be operating here, and these
effects will have to be probed in future work before a
more definitive answer can be reached. The effect of
different architectures on the catalytic ability of these
polymers in acylation reactions was less pronounced.
The polyester dendrimer 2 and dendronized polymer 3
had similar reactivity profiles, while reflecting some-
what the difference in reactivity between the DMAP-
like and PPY-like groups that reside in each, respec-
tively.
J. M. J. J. Am. Chem. Soc. 1999, 121, 9471-9472.
(8) Astruc, D.; Chardac, F. Chem. Rev. 2001, 101, 2991-3024.
(9) Oosterom, G. E.; Reek, J. N. H.; Kamer, P. C. J.; van
Leeuwen, P. W. N. M. Angew. Chem., Int. Ed. 2001, 40,
1828-1849.
(10) Liu, L.; Breslow, R. J. Am. Chem. Soc. 2003, 125, 12110-
12111.
(11) Delort, E.; Darbre, T.; Reymond, J.-L. J. Am. Chem. Soc.
2004, 126, 15642-15643.
(12) Knapen, J. W. J.; van der Made, A. W.; de Wilde, J. C.; van
Leeuwen, P. W. N. M.; Wijkens, P.; van Koten, G. Nature
(London) 1994, 372, 659-663.
(13) Seebach, D.; Marti, R. E.; Hintermann, T. Helv. Chim. Acta
1996, 79, 1710-1740.
(14) Reetz, M. T.; Lohmer, G.; Schwickardi, R. Angew. Chem., Int.
Ed. Engl. 1997, 36, 1526-1529.
(15) Ko¨llner, C.; Pugin, B.; Togni, A. J. Am. Chem. Soc. 1998, 120,
10274-10275.
(16) Kleij, A. W.; Gossage, R. A.; Klein Gebbink, R. J. M.;
Brinkmann, N.; Reijerse, E. J.; Kragl, U.; Lutz, M.; Spek, A.
L.; van Koten, G. J. Am. Chem. Soc. 2000, 122, 12112-12124.
(17) Breinbauer, R.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2000,
39, 3604-3607.
(18) Francavilla, C.; Drake, M. D.; Bright, F. V.; Detty, M. R. J.
Am. Chem. Soc. 2001, 123, 57-67.
(19) Bhyrappa, P.; Young, J. K.; Moore, J. S.; Suslick, K. S. J.
Am. Chem. Soc. 1996, 118, 5708-5711.
(20) Rheiner, P. B.; Seebach, D. Chem.sEur. J. 1999, 5, 3221-
3236.
(21) Crooks, R. M.; Zhao, M.; Sun, L.; Chechik, V.; Yeung, L. K.
Acc. Chem. Res. 2001, 34, 181-190.
(22) Hecht, S.; Fre´chet, J. M. J. J. Am. Chem. Soc. 2001, 123,
6959-6960.
(23) Hecht, S.; Fre´chet, J. M. J. Angew. Chem., Int. Ed. 2001, 40,
74-91.
(24) Ho¨fle, G.; Steglich, W.; Vorbru¨ggen, H. Angew. Chem., Int.
Ed. Engl. 1978, 17, 569-583.
As this work represents the first step in understand-
ing the effects of subtle manipulations of nanoenviron-
ment and geometry on the function of complex macro-
molecules such as dendrimers and dendronized polymers,
we can expect more research in this area in the future.
(25) Scriven, E. F. V. Chem. Soc. Rev. 1983, 12, 129-161.
(26) Deratani, A.; Darling, G. D.; Horak, D.; Fre´chet, J. M. J.
Macromolecules 1987, 20, 767-772.
(27) Deratani, A.; Darling, G. D.; Fre´chet, J. M. J. Polymer 1987,
28, 825-830.
(28) Liang, C. O.; Helms, B.; Hawker, C. J.; Fre´chet, J. M. J.
Chem. Commun. 2003, 20, 2524-2525.
Acknowledgment. This work was funded through
the National Science Foundation (NSF-DMR0317514 to
JF) and the Department of Energy through the Biomo-
lecular Science Program (DE-AC03-76SF00098).
(29) Grayson, S. M.; Fre´chet, J. M. J. Chem. Rev. 2001, 101, 3819-
3867.
(30) Hawker, C. J.; Fre´chet, J. M. J. J. Am. Chem. Soc. 1990, 112,
7638-7647.
(31) Ihre, H.; Padilla De Jesus, O. L.; Fre´chet, J. M. J. J. Am.
Chem. Soc. 2001, 123, 5908-5917.
Supporting Information Available: Detailed experi-
mental procedures and characterization for dendrimers 1 and
2. This information is available free of charge via the Internet
(32) Gillies, E. R.; Fre´chet, J. M. J. J. Org. Chem. 2004, 69, 46-
53.
(33) Grayson, S. M.; Fre´chet, J. M. J. Macromolecules 2001, 34,
6542-6544.
References and Notes
(34) Vaidya, R. A.; Mathias, L. J. J. Am. Chem. Soc. 1986, 108,
5514-5520.
(1) Ruble, J. C.; Latham, H. A.; Fu, G. C. J. Am. Chem. Soc. 1997,
119, 1492-1493.
MA050701M