M. Chakrabarty et al. / Tetrahedron Letters 46 (2005) 2865–2868
2867
Table 1. Regioselective synthesisa,b of 2-alkylamino-TIs 8a–c and 2-alkylthio-TIs 11a–e starting from 5
Thioureidoindoles
Time (h); yields (%)
N-SO2 Ph-TIs
Yields (%)
2-Alkylamino-TIs
Yields (%)
6a
6b
6c
3.0; 90
4.5; 92
7.0; 89
7a
7b
7c
70
78
75
8a
8b
8c
85
95
90
Indolyldithiocarbamates
Yields (%)
9a
9b
9c
9d
9e
95
98
93
90
90
1
10a
10b
10c
10d
10e
85
82
85
86
84
11a
11b
11c
11d
11e
98
95
94
92
96
a All products were identified by IR, H and 13C NMR, DEPT 135, MS, elemental analysis/HRMS, and in some cases additionally by HMQC and
HMBC spectra.
b Refer to isolated pure products.
8. (a) Chakrabarty, M.; Ghosh, N.; Harigaya, Y. Hetero-
cycles 2004, 62, 779–786; (b) Chakrabarty, M.; Ghosh, N.;
Harigaya, Y. Tetrahedron Lett. 2004, 45, 4955–4957.
9. Dzyabenko, V. G.; Abramenko, P. I. Zh. Org. Khim. 1988,
24, 831–835, Chem. Abstr. 1988, 109, 56555w.
10. Kitazawa, N.; Ueno, K.; Takahashi, K.; Kimura, T.;
Sasaki, A.; Kawano, K.; Okabe, T.; Komatsu, M.;
Matsunaga, M.; Kubota, A. EP 0976732; Chem. Abstr.
1998, 129, 302552.
11. (a) Kyziol, J. B.; Daszkiewicz, Z. Pol. J. Chem. 1983, 57,
839–847; (b) Ram, S.; Ehrenkaufer, R. E. Tetrahedron
Lett. 1984, 25, 3415–3418.
12. Ambati, N. B.; Anand, V.; Hanumanthu, P. Synth.
Commun. 1997, 27, 1487–1493.
of the benzenesulfonyl groups was apparent from
appropriate MS and NMR data, as well as from the
lowering of the chemical shift of C-8 from d 107–108
in 10a–e to d 101 in 11a–e. A typical cyclisation proce-
dure15 and the yields of both types of condensation
products as well as the TIs (Table 1) are presented.
In conclusion, we have developed an expedient and effi-
cient five-step, regioselective synthesis of both 2-alk-
ylamino- and 2-alkylthiothiazolo[5,4-e]indoles, which
involves the construction of the thiazole nucleus on
the benzene ring of precursor indoles. However, the bio-
active potential of the synthesised TIs remains to be
explored.
13. Data of a representative member, 6a: mp 172–174 ꢁC; IR
1
(nujol): 3370, 1533, 1275, 1109, 1056, 777, 731 cmꢀ1; H
NMR (CDCl3): d 3.08 (3H, d, J = 4.5 Hz), 5.98 (1H, br s),
6.66 (1H, d, J = 3.5 Hz), 7.15 (1H, d, J = 8.5 Hz), 7.40
(1H, s), 7.48 (2H, t, J = 7.5 Hz), 7.58 (1H, t, J = 7.5 Hz),
7.62 (1H, d, J = 3.5 Hz), 7.88 (2H, d, J = 7.5 Hz), 8.0(1H,
d, J = 8.5 Hz), 8.16 (1H, br s); 13C NMR: d 32.4 (CH3),
109.2, 115.3, 119.4, 123.2, 127.2 (·2), 128.3, 129.9 (·2),
134.5 (all Ar–CH), 131.9, 132.2, 133.9, 138.3 (all Ar–C),
182.3 (C@S); EI-MS: m/z 345 (M+), 315, 314, 311, 272,
173, 170 (100%), 141, 131, 77. Anal. Calcd for
C16H15N3O2S2: C, 55.65; H, 4.35; N, 12.17%. Found: C,
55.60; H, 4.34; N, 12.19%.
Acknowledgements
The authors sincerely thank the Director, Bose Institute
for laboratory facilities, the C.S.I.R., Government of In-
dia for providing a fellowship (T.K.), Mr. B. Majumder,
NMR Facilities and Mr. P. Dey, Microanalytical Labo-
ratory, both of B.I., for recording the spectra.
References and notes
14. (a) Monde, K.; Tamura, K.; Takasugi, M.; Kobayashi, K.;
Somei, M. Heterocycles 1994, 38, 263–267; (b) Mehta, R.
G.; Liu, J.; Constantinou, A.; Thomas, C. F.; Hawthorne,
M.; You, M.; Gerha¨user, C.; Pezzuto, J. M.; Moon, R. C.;
Moriarty, R. M. Carcinogenesis 1995, 16, 399–404.
15. General procedure for the cyclisation of 6a–c to 7a–c and
9a–e to 10a–e: To a solution of 6a–c/9a–e (1 mM) in
CH2Cl2 (10mL) at ꢀ10 ꢁC were added NBS (1 mM), and,
after 5–10min, DBU (2 mM). The solution was stirred for
another 30min, then poured into saturated aqueous
Na2S2O3 (15 mL) and extracted with CH2Cl2
(3 · 25 mL). The pooled extracts were washed with water,
dried (Na2SO4), the solvent removed in vacuo and the
residue was purified either by crystallisation (for 10a, 10b)
from CH2Cl2–petroleum ether, bp 60–80 ꢁC or by column
chromatogaphy over neutral alumina (for 7a–c) (elution
with 25–35% EtOAc in pet. ether) or over silica gel (for
10c–e) (elution with 5–10% EtOAc in pet. ether).
1. Pedras, M. S. C.; Okanga, F. I.; Zaharia, I. L.; Khan, A.
Q. Phytochemistry 2000, 53, 161–176.
2. See Refs. 1–9 and 14–16 in Ref. 8b below.
3. Alexandre, F.-R.; Berecibar, A.; Wrigglesworth, R.;
Besson, T. Tetrahedron Lett. 2003, 44, 4455–4458, and
references cited therein.
4. Andreani, A.; Granaiola, M.; Leoni, A.; Locatelli, A.;
Morigi, R.; Rambaldi, M. Eur. J. Med. Chem. 2001, 36,
743–746.
5. van Vliet, L. A.; Rodenhuis, N.; Wikstro¨m, H. J. Med.
Chem. 2000, 43, 3549–3557.
6. Davis, S. T.; Benson, B. G.; Bramson, H. N.; Chapman,
D. E.; Dickerson, S. H.; Dold, K. M.; Eberwein, D. J.;
Edelstein, M.; Frye, S. V.; Gampe, R. T., Jr.; Griffin, R. J.;
Harris, P. A.; Hassell, A. M.; Holmes, W. D.; Hunter, R.
N.; Knick, V. B.; Lackey, K.; Lovejoy, B.; Luzzio, M. J.;
Murray, O.; Parker, P.; Rocque, W. J.; Shewchuk, L.;
Veal, J. M.; Walker, D. H.; Kuyper, L. F. Science 2001,
291, 134–137.
16. Tholander, J.; Bergman, J. Tetrahedron 1999, 55, 6243–
6260.
17. Data of a representative member, 8a: mp 158–160 ꢁC; IR
1
(KBr): 3396, 3224, 3101, 1614, 1564, 1409, 761 cmꢀ1; H
7. Aiello, F.; Brizzi, A.; Garofalo, A.; Grande, F.; Ragno,
G.; Dayam, R.; Neamati, N. Bioorg. Med. Chem. 2004, 12,
4459–4466.
NMR (DMSO-d6): d 2.90(3H, d, J = 3 Hz),), 6.30(1H, s),
7.20and 7.25 (1H, d each, J = 8.5 Hz), 7.31 (1H, s), 7.51