10.1002/anie.201905426
Angewandte Chemie International Edition
RESEARCH ARTICLE
Y. Masuda Tetrahedron Lett. 2000, 41, 5877–5880; (q) T. Ishiyama, T.-
A. Ahiko, N. Miyaura, N. Tetrahedron Lett. 1996, 37, 6889–6892.
(a) B. M. Trost, J.-P. Surivet, Angew. Chem. Int. Ed. 2000, 39, 3122–
3124; (b) B. M. Trost, J.-P. Surivet, J. Am. Chem. Soc. 2000, 122, 6291–
6292.
K. Ohmatsu, M. Ito, T. Kunieda, T. Ooi, Nat. Chem. 2012, 4, 473–477.
X.-F. Yang, W.-H. Yu, C.-H. Ding, Q.-P. Ding, S.-L. Wan, X.-L. Hou, L.-
X. Dai, P.-J. Wang, J. Org. Chem. 2013, 78, 6503–6509.
M. Nakoji, T. Kanayama, T. Okino, Y. Takemoto, J. Org. Chem. 2002,
67, 7418–7423.
diastereoselectivity are addressed by judicious choice of the
appropriate Lewis base/transition metal catalyst combination.
Finally, in situ stereospecific C–N rearrangement enables
nitrogen substitution to be augmented within the confines of a
useful protecting group regime. Limitations to this protocol include
the sensitivity of styrenyl motifs to the oxidation step; however,
this can be circumvented by elaboration of a vinylsilane motif via
Hiyama cross coupling. Finally, neither aliphatic esters nor
terminal alkyl-substituted electrophiles are productive partners in
this process; both aspects are the subject of current study within
our laboratory. Nonetheless, we expect this operationally
straightforward and modular protocol will prove useful to those
researchers requiring access to enantioenriched homoallylic
amines. The starting Pfp ester are inexpensive to prepare in a
single step from the precursor acid and are of established utility
as acyl donors for peptide coupling.[20] Similarly, the electrophiles
used can be readily accessed using robust methods. Overall, this
study demonstrates the potential of combining simultaneous
catalysis events with subsequent value-added transformations in
stereoselective chemical synthesis.
[5]
[6]
[7]
[8]
[9]
T. Kanayama, K. Yoshida, H. Miyabe, Y. Takemoto, Angew. Chem. Int.
Ed. 2003, 42, 2054–2056.
[10] (a) X. Huo, J. Zhang, J. Fu, R. He, W. Zhang, J. Am. Chem. Soc. 2018,
134, 2080−2084; (b) X. Huo, R. He, J. Fu, J. Zhang, G. Yang, W. Zhang,
J. Am. Chem. Soc. 2016, 139, 9819–9822.
[11] (a) J. Liu, C.-G. Cao, H.-B. Sun, X. Zhang, D. Niu, J. Am. Chem. Soc.
2016, 138, 13103−13106; (b) L. Wan, L. Tian, J. Liu, D. Niu, Synlett 2017,
28, 2051–2056.
[12] For a recent review of catalyst-controlled stereodivergence, see: (a) S.
Krautwald, E. M. Carreira, J. Am. Chem. Soc. 2017, 139, 5627–5639.
For selected additional examples, see: (b) F. A. Cruz, V. M. Dong, J. Am.
Chem. Soc. 2017, 139, 1029–1032; (c) S. Kassem, A. T. Lee, D. A.
Leigh, V. Marcos, L. I. Palmer, S. Pisano, Nature 2017, 549, 374–378;
(d) T. Sandmeier, S. Krautwald, H. F. Zipfel, E. M. Carreira, Angew.
Chem Int. Ed. 2015, 54, 14363–14367; (e) S. Krautwald, M. A. Schafroth,
D. Sarlah, E. M. Carreira, J. Am. Chem. Soc. 2014, 136, 3020–3023; (f)
S. Krautwald, D. Sarlah, M. A. Schafroth, E. M. Carreira, Science 2013,
340, 1065–1068.
[13] For an excellent modular stereodivergent approach to enantioenriched
allylic amines bearing vicinal stereogenic centers via three sequential
catalyst-controlled reactions, see:(a) P. Tosatti, A. J. Campbell, D.
House, A. Nelson, S. P. Marsden J. Org. Chem. 2011, 76, 5495.–5510
[14] (a) K. J. Schwarz, J. L. Amos, J. C. Klein, D. T. Do, T. N. Snaddon, J.
Am. Chem. Soc. 2016, 138, 5214–5217; (b) K. J. Schwarz, C. M.
Pearson, G. A. Cintron-Rosado, P. Liu, T.N. Snaddon, Angew. Chem Int.
Ed. 2018, 57, 7800–7803; (c) J. W. B. Fyfe, O. M. Kabia, C. M. Pearson,
T. N. Snaddon, Tetrahedron 2018, 74, 5383–5391; (d) K. J. Schwarz, C.
Yang, J. W. B. Fyfe, T. N. Snaddon, Angew. Chem. Int. Ed. 2018, 57,
12102–12105; (e) W. R. Scaggs, T. N. Snaddon, Chem. Eur. J. 2018, 24,
14378–14381; (f) L. Hutchings-Goetz, C. Yang, T. N. Snaddon, ACS
Catal. 2018, 8, 10537−10544; (g) W. R. Scaggs, T. D. Scaggs, T. N.
Snaddon, Org. Biomol. Chem. 2019, 17, 1787–1790.
Acknowledgements
We gratefully acknowledge Indiana University and the National
Institutes of Health (R01GM121573) for generous financial
support. We also thank Dr. Maren Pink (IU) for X-ray
crystallography.
[15] For other examples of C1-ammonium enolates being employed in
conjunction with transition metal catalysis, see: (a) S. S. Spoehrle, T. H.
West, J. E. Taylor, A. M. Z. Slawin, A. D. Smith, J. Am. Chem. Soc. 2017,
139, 11895–11902; (b) Z. Jiang, J. J. Beiger, J. F. Hartwig, J. Am. Chem.
Soc. 2017, 139, 87–90; (c) X. Lu, L. Ge, C. Cheng, J. Chen, W. Cao, X.
Wu, Chem. Eur. J. 2017, 23, 7689–7693; (d) J. Song, Z.-J. Zhang, L.-Z.;
Gong, Angew. Chem. Int. Ed. 2017, 56, 5212–5216; (e) J. Song, Z.-J.
Zhang, S.-S. Chen, T. Fan, L.-Z. Gong, J. Am. Chem. Soc. 2018, 140,
3177–3180.
Conflict of Interest
The authors declare no conflict of interest.
Keywords: amine • ammonium enolate • alkylation • palladium •
rearrangement
[16] For reviews of C1-ammonium enolate generation and reactivity, see: (a)
W. C. Hartley, T. J. C. O’Riordan, A. D. Smith, Synthesis 2017, 49, 3303–
3310; (b) L. C. Morrill, A. D. Smith, Chem. Soc. Rev. 2014, 43, 6214–
6226; (c) M. J. Gaunt, C. C. Johansson, Chem. Rev. 2007, 107, 5596–
5605; (d) D. H. Paull, A. Weatherwax, T. Lectka, Tetrahedron 2009, 65,
6771–6803; (e) S. France, D. J. Guerin, S. J. Miller, T. Lectka, Chem.
Rev. 2003, 103, 2985–3012.
[17] For computation supporting the structure of benzotetramisole-derived
C1-ammonium enolates, including a discussion of stereocontrol, see: (a)
T. H. West, D. M. Walden, J. E. Taylor, A. C. Brueckner, R. C. Johnstone,
P. H.-Y. Cheong, G. C. Lloyd-Jones, A. D. Smith, J. Am. Chem. Soc.
2017, 139, 4366–4375; (b) E. R. T. Robinson, D. M. Waldon, C. Fallan,
M. D. Greenhalgh, P. H.-Y. Cheong, A. D. Smith, Chem. Sci. 2016, 7,
6919–6927.
[18] For reviews concerning catalyzed enantioselective reactions proceeding
via p(allyl)Pd electrophiles, see: (a) J. Tsuji, Tetrahedron 2015, 71, 6330–
6348; (b) B. M. Trost Tetrahedron 2015, 71, 5708–5733; (c) J. D.
Weaver, A. Recio, III, A. J. Grenning, J. A. Tunge, Chem. Rev. 2011,
111, 1846–1913; (d) B. M. Trost, M. R. Machacek, A. P. Aponick, Acc.
Chem. Res. 2006, 39, 747–760; (e) B. M. Trost, M. L. Crawley,. Chem.
Rev. 2003, 103, 2921–2944; (f) B. M. Trost, D. L. Van Vranken, Chem.
Rev. 1996, 96, 395–422.
[19] For computation concerning benzotetramisole-containing C1-ammonium
enolates reacting with cationic p(allyl)Pd(II) electrophiles via an outer-
sphere mechanism, see: Ref 14b.
[20] Pentafluorophenyl esters are established acyl donors in peptide bond
formation. For examples, see: (a) L. M. Gayo, M. J. Suto, Tetrahedron
Lett. 1996, 37, 4915–4918; (b) M. Green, J. Berman, Tetrahedron Lett.
1990, 31, 5851–5852; (c) E. Atherton, L. R. Cameron, R. C. Sheppard,
Tetrahedron 1988, 44, 843–857; (d) L. Kisfaludy, J. Roberts, R. Johnson,
G. L. Mayers, J. Kovacs, J. Org. Chem. 1970, 35, 3563–3565.
[1]
Amines: Synthesis, Properties and Applications; S. A. Lawrence,
Cambridge University Press, Cambridge, 2004.
B. Weiner, W. Szymański, D. B. Janssen, A. J. Minnaard, B. L. Feringa,
Chem. Soc. Rev. 2010, 39, 1656–1691.
For reviews, see: (a) M. Yus, J. C. González-Gómez, F. Foubelo, Chem.
Rev. 2013, 113, 5595–5698; (b) M. Yus, J. C. González-Gómez, F.
Foubelo, Chem. Rev. 2011, 111, 7774–7854; (c) S. Kobayashi, Y. Mori,
J. S. Fossey, M. M. Salter, Chem. Rev. 2011, 111, 2626–2704.
[2]
[3]
[4]
For reviews, see: (a) C. Diner, K. J. Szabo, J. Am. Chem. Soc. 2017,
139, 2–14; (b) T. R. Ramadhar, R. A Batey, Synthesis 2011, 1321–1346;
(c) H.-X. Huo, J. R. Duvall, M.-Y. Huang, R. Hong, Org. Chem. Front.
2014, 1, 303–320. For selected examples, see: (d) M. Fujita, T. Nagano,
U. Schneider, T. Hamada, C. Ogawa, S. Kobayashi, J. Am. Chem. Soc.
2008, 130, 2914–2915; (e) S. J. Jonker, C. Diner, G. Schulz, H. Iwamoto,
L. Eriksson, K. Szabó, Chem. Commun. 2018, 54, 12852–12855; (f) R.
J. Morrison, A. H. Hoveyda, Angew. Chem. Int. Ed. 2018, 57, 11654–
11661; (g) H. Jang, F. Romiti, S. Torker, A. H. Hoveyda, Nat. Chem.
2017, 9, 1269–1275; (h) F. W. van der Mei, H. Miyamoto, D. L. Silverio,
D. L.; Hoveyda, A. H. Angew. Chem. Int. Ed. 2016, 55, 4701–4706; (i)
Silverio, S. Torker, T. Pilyugina, E. M. Vieira, M. L. Snapper, F. Haeffner,
A. H. Hoveyda, Nature 2013, 494, 216–221; (j) E. M. Vieira, M. L.
Snapper, A. H. Hoveyda, J. Am. Chem. Soc. 2011, 133, 3332–3335; (k)
S. Lou, P. N. Moquist, S. E. Schaus, J. Am. Chem. Soc. 2007, 129,
15398–15404; (l) K. Yeung, R. E. Ruscoe, J. Rae, A. P. Pulis, D. J.
Procter, Angew. Chem. Int. Ed. 2016, 55, 11912–11916; (m) B. Alam, C.
Diner, S. Jonker, L. Eriksson, K. J. Szabo, Angew. Chem. Int. Ed. 2016,
55, 14417–14421; (n) P. Zhang, I. A. Roundtree, J. P. Morken, Org. Lett.
2012, 14, 1416–1419; (o) G. Dutheuil, N. Selander, K. J. Szabo, V. K.
Aggarwal, Synthesis 2008, 14, 2293–2297; (p) M. Murata, S. Watanabe,
This article is protected by copyright. All rights reserved.